
176

Предисловие.. 3
Базовые операторы, математика... 9

[ЧАСТЬ I] �Шаблоны, требующие знания переменных, их типов
и арифметических операторов... 13

[1]. Обновление.. 14
[2]. Обмен... 19
[3]. Манипуляции с цифрами.. 24
[4]. Арифметика на числовой окружности.. 29
[5]. Усечение... 36

[ЧАСТЬ II] �Шаблоны, требующие знания логических операторов,
операторов сравнения, условий и методов.................................. 39

[6]. Индикаторы... 41
[7]. Индикаторные методы... 47
[8]. Округление... 55
[9]. Начало и завершение.. 60
[10]. Битовые флаги... 64
[11]. Подсчет цифр... 71

[ЧАСТЬ III] �Шаблоны, требующие знаний о циклах, массивах
и вводе-выводе данных.. 74

[12]. Повторный ввод.. 76
[13]. Аккумуляторы.. 80
[14]. Массивы аккумуляторов... 87
[15]. Массивы поиска... 92
[16]. Принадлежность интервалу.. 98
[17]. Конформные массивы... 104
[18]. Сегментированные массивы.. 110

[ЧАСТЬ IV] Шаблоны, требующие углубленных знаний о массивах.......... 117
[19]. Подмассивы... 118
[20]. Окрестности... 122

[ЧАСТЬ V] Шаблоны, требующие знания строковых объектов.................. 128
[21]. Центрирование.. 129
[22]. Разделение строк... 136
[23]. Динамическое форматирование.. 143
[24]. Множественность.. 146

[ЧАСТЬ VI] Шаблоны, требующие знания ссылок.. 150
[25]. Цепочечные мутаторы.. 151
[26]. Исходящие параметры.. 155
[27]. Отсутствующие значения... 164
[28]. Контрольные списки... 169

Содержание

92

[15]

МАССИВЫ ПОИСКА

Даже начинающие программисты быстро понимают, что массивы
позволяют очень легко выполнять одни и те же операции над каждым
компонентом однородной группы элементов. Однако они часто не осоз-
нают, что массивы можно использовать и менее очевидными способа-
ми. Примером могут служить массивы поиска.

Описание задачи
Раньше съезды с автомагистралей нумеровались последователь-

ными целыми числами. Первый съезд (на конкретной автомагистра-
ли) имел номер 1, второй — номер 2 и т. д. Позже нумерация съездов
с шоссе была изменена так, чтобы она соответствовала номеру мили
(т. е. количеству миль, пройденных от начала шоссе до соответствую-
щего съезда). Таким образом, съезд на отметке 1-й мили имеет номер
1, съезд на отметке 15-й мили имеет номер 15 и т. д. Возникает задача:
как «преобразовать» старую нумерацию съездов в новую?

Обзор
Как вы знаете, массивы обладают двумя важными характеристика-

ми. Во-первых, каждый элемент должен быть одного типа (т. е. элемен-
ты должны быть однородными). Во-вторых, индексы представляют собой
последовательные неотрицательные целочисленные значения. Однако,
помимо этого, нет никаких ограничений на их использование.

Когда вы впервые знакомитесь с массивами, все примеры, как прави-
ло, подразумевают какую-либо «обработку данных». Например, идет ли
речь о еженедельных продажах, годовой численности населения, оцен-
ках на экзаменах и т. д. — это массивы данных. Индексы используются
просто для дифференциации элементов. Однако значения индексов мо-
гут иметь смысл сами по себе. Например, в данном контексте индексы
могут представлять номера съездов с автомагистрали.

Ход решения
Остается только подумать о том, должны ли индексы обозначать

номера съездов по старой системе или по новой. К счастью, учитывая
природу старых и новых номеров съездов, правильная схема нумера-
ции очевидна. Индексы массива начинаются с 0, но имеют те же свой-
ства, что и старая система нумерации съездов. Итак, если имеется пять

>Шаблоны программирования для начинающих

93

съездов, вы можете использовать массив длиной шесть элементов (с ин-
дексами 0, 1, …, 5) для хранения информации о каждом съезде. В этом
случае информация, которую вы хотите связать с каждым старым но-
мером съезда, — это новый номер съезда, который сам по себе является
целочисленным значением. Таким образом, вы можете хранить нужную
вам информацию в массиве целочисленных значений длиной в шесть.

Например, если новые номера съездов находятся на отметках 1, 15,
16, 28 и 35 миль, вы можете сохранить их в следующем массиве с именем
NEW_NUMBERS:

где первый элемент -1 указывает на отсутствие старого съезда с номе-
ром 0. Это показано на рисунке 15.1.

-1 1 15 16 28 35

Старые номера съездов

Новые номера съездов

Индексы	 0	 1	 2	 3	 4	 5

Элементы

Рис. 15.1. Соответствие между старыми и новыми номерами съездов

Тогда новый номер съезда, соответствующий старому номеру съезда
i, будет равен NEW_NUMBERS[i]. Например, NEW_NUMBERS[3] — это но-
вый номер съезда, соответствующий старому номеру съезда 3.

Шаблон
Из этого примера сразу следует закономерность:
1. �Создайте массив, в котором индексы соответствуют ключу, кото-
рый будет использоваться для выполнения поиска, а элементы со-
ответствуют значению, которое необходимо определить.

2. �Создайте функцию, которая проверяет ключ и возвращает соответ-
ствующий элемент массива для любого допустимого ключа (и ста-
тус ошибки для любого недопустимого ключа).

с примерами на Python_

NEW_NUMBERS: List[int] = [-1, 1, 15, 16, 28, 35]

94

Примеры
Некоторые другие примеры помогут проиллюстрировать как досто-

инства, так и ограничения, касающиеся этого шаблона.

Пример с нумерацией съездов
Продолжая пример с номерами съездов, вы можете реализовать этот

шаблон следующим образом:

Эта функция возвращает значение -1, если старый номер недей-
ствителен, в противном случае она возвращает новый номер съезда	
NEW_NUMBERS[oldExitNumber].

Нецелые значения
Конечно, хотя индексы должны быть целыми числами (из-за приро-

ды массивов)1, значения не обязательно должны быть целыми. Это легко
проиллюстрировать на примере, где имя съезда соответствует старому
номеру съезда:

1  В главе 17, посвященной конформным массивам, обсуждается один из способов обойти это
ограничение.

>Шаблоны программирования для начинающих

NEW_NUMBERS: List[int] = [-1, 1, 15, 16, 28, 35]

def newExitNumberFor(oldExitNumber: int) - > int:

 if ((oldExitNumber > 5)):
 return -1

 else:
 return NEW_NUMBERS[oldExitNumber]

NAMES: List[str] = ["", "Willow Ave.", "Broad St.", \
"Downtown", "North End", "Lake Dr."]

117

[ЧАСТЬ IV]

Шаблоны, требующие углубленных
знаний о массивах

Часть IV содержит шаблоны программирования, которые требуют
более глубокого понимания массивов и понимания массивов массивов
(иногда называемых многомерными массивами). В частности, эта часть
книги содержит следующие шаблоны программирования.

Подмассивы. Решение задач, в которых вычисления необходимо
выполнять для всех элементов массива, расположенных между дву-
мя индексами.

Окрестности. Решение задач, в которых вычисления необходимо
выполнять для всех элементов массива, находящихся «в окрестно-
сти» определенного индекса.

Оба этих шаблона предполагают выполнение вычислений над под
множеством элементов массива. Они различаются способом определе-
ния подмножества.

с примерами на Python_

118

[19]

ПОДМАССИВЫ

Описание задачи
Большинство примеров с массивами, которые вы видели, включают

в себя перебор всех элементов. Однако во многих ситуациях вам нужно
перебрать только некоторые элементы массива. Поскольку в этой книге
вы сталкивались в основном с примерами, в которых это не так, вы, воз-
можно, могли начать использовать шаблон, который усложняет решение
поставленной задачи (поэтому его иногда называют антишаблоном).

Обзор
Предположим, вас попросили написать функцию, которой передается

массив целочисленных значений, а возвращается общая сумма элемен-
тов массива. Вероятно, вы бы использовали аккумулятор (см. главу 13):

Эта функция предполагает, что количество итераций определено,
и использует цикл for.

Проблема этой реализации в том, что она не позволяет найти сум-
му подмножества элементов. Например, если индексы представляют
месяцы, а элементы представляют данные о продажах, то вам может
потребоваться найти общий объем продаж только за второй квартал
(т. е. апрель, май и июнь; номера месяцев 3, 4, 5 отсчитываются от 0).

Ход решения
Очевидно, что вам нужно добавить в функцию формальные пара-

метры, описывающие интересующее подмножество. Например, вы
можете передать еще один массив, содержащий рассматриваемые
индексы. Или вы можете передать конформный массив логических

>Шаблоны программирования для начинающих

def total(data: List[int]) - > int:
 result: int = 0

 for i in range(len(data)):
 result + = data[i]
 return result

128

[ЧАСТЬ V]

Шаблоны, требующие знания
строковых объектов

Часть V содержит шаблоны программирования, требующие понима-
ния строковых объектов. Эта часть книги содержит следующие шаблоны
программирования.

Центрирование. Решение проблем, связанных с центрированием
содержимого (разных видов) в контейнерах (разных видов).

Разделение строк. Решение задач, аналогичных задаче расстановки
запятых между словами в списке.

Динамическое форматирование. Решение проблем, требующих
динамического определения формата строки (т. е. во время выпол-
нения, а не во время компиляции).

Множественность. Решение проблемы образования как правиль-
ных, так и неправильных форм множественного числа.

Первые три шаблона в этой части книги используют аккумулятор
и некоторую другую логику для решения связанных с ними задач. Мо-
дель множественности на самом деле представляет собой не что иное,
как умелое использование методов.

>Шаблоны программирования для начинающих

150

[ЧАСТЬ VI]

Шаблоны, требующие
знания ссылок

Часть VI содержит шаблоны программирования, требующие пони-
мания объектов, ссылок, а также передачи параметров. В частности, эта
часть книги содержит следующие шаблоны программирования.

Цепочечные мутаторы. Решение задачи последовательного вызова
нескольких различных методов для одного объекта.

Исходящие параметры. Решение задачи, когда необходимо вернуть
несколько фрагментов информации из одного метода.

Отсутствующие значения. Решение проблемы отличия пропу-
щенных значений от фактических, чтобы их можно было по-разно-
му обрабатывать при выполнении различного рода вычислений.

Контрольные списки. Решение задачи проверки соответствия
определенному набору критериев (назначенных во время выпол-
нения).

Шаблон цепочечных мутаторов предполагает возврат ссылки, а ша-
блон исходящих параметров предполагает передачу ссылок. Шаблон
пропущенных значений использует преимущества «специальной» ссыл-
ки null. Наконец, шаблон контрольных списков является обобщением
шаблона битовых флагов, который позволяет создавать набор критери-
ев динамически (т. е. во время выполнения).

>Шаблоны программирования для начинающих

151

[25]

ЦЕПОЧЕЧНЫЕ МУТАТОРЫ

Существуют примеры, когда метод вызывается для значения, возвра-
щаемого другим методом, без присвоения возвращаемого значения про-
межуточной переменной. Мнения программистов всех уровней по пово-
ду эффективности этой практики расходятся. Тем не менее, она довольно
распространена. Поэтому важно учитывать такое поведение при реализа-
ции методов, которые могут быть объединены в цепочку таким образом.

Описание задачи
Предположим, вам нужно создать адрес электронной почты из строко-

вой переменной, названной user, которая содержит имя пользователя, и
строковой переменной, названной university, которая содержит назва-
ние университета. Для повышения эффективности вы хотите использо-
вать внешнюю библиотеку StringBuilder вместо конкатенации строк.

Один из способов реализации этого заключается в следующем:

В этой реализации каждый вызов метода append() просто изменяет
состояние StringBuilder по мере необходимости.

Этот способ работает, но он несколько сложнее, чем использова-
ние конкатенации строк, поскольку требует нескольких операторов.
Вместо этого вы могли бы воспользоваться преимуществами класса
StringBuilder без дополнительных сложностей. В принципе, этого
можно добиться, используя цепочку вызовов следующим образом:

с примерами на Python_

sb = StringBuilder()
sb.append(user)
sb.append("@")
sb.append(university)
sb.append(".edu")

sb = StringBuilder()
sb.append(user).append("@").append(university).\
append(".edu")

152

Однако это решение будет работать только в том случае, если метод
append() реализована с учетом подобной специфики.

Шаблон
Если вы хотите использовать цепочку вызовов для изменения объ-

екта, то методы мутатора, которые должны быть объединены в цепоч-
ку, должны возвращать что-то, для чего может быть вызван следующий
метод в цепочке. Однако он не может просто возвращать что угодно; он
должен возвращать объект соответствующего типа (т. е. объект того же
типа, что и объект-владелец). Но даже этого недостаточно — он должен
фактически вернуть сам объект-владелец. То есть мутатор должен воз-
вращать ссылку на сам объект-владелец.

Класс StringBuilder использует эту идею именно по этой причи-
не. Методы append(), delete(), insert(), replace() и reverse()
все возвращают ссылку на объект-владелец, что позволяет связать
их вызовы в цепочку. Итак, в примере метод sb.append(user) воз-
вращает ссылку на sb, затем sb вызывает метод append(«@»)и так	
далее.

Пример
Предположим, вы хотите создать инкапсуляцию объекта Robot,

которая хранит его местоположение в одном или нескольких атри-
бутах и может перемещаться в четырех направлениях (вперед, на-
зад, вправо и влево). Вам, очевидно, потребуется один или несколько
методов-мутаторов для обработки перемещений. Предположим да-
лее, что вы решили создать метод-мутатор для каждого направле-
ния с названиями moveBackward(), moveForward(), moveLeft()
и moveRight().

Если бы вы не были заинтересованы в поддержке цепочки вызовов,
то эти методы были бы void (т. е. «пустыми», они бы ничего не возвра-
щали), и их можно было бы использовать, как в следующем примере:

>Шаблоны программирования для начинающих

bender: Robot = Robot()
bender.moveForward()
bender.moveForward()
bender.moveRight()
bender.moveForward()

