Содержание

Участники издания
Предисловие к изданию на русском языке7
Предисловие к изданию на английском языке
Список сокращений и условных обозначений10
 Технические рекомендации для ПЭТ/КТ сердца (М.Ф. Ди Карли, Р. Гвиббини, Д. Альбано, Е. Милан, И. Карваял, Е. Александерсон, Д. Паец, М. Донди)
 Диагностика ишемической болезни сердца (М.Ф. Ди Карли, Р. Гвиббини, П. Рагги, В. Сингх, Д. Альбано, Л. Камони, М. Бертоли, Ц. Роделла, М. Донди, Р. Эндозо, А. Торнтон, Д. Паец)
 Оценка инфильтративных кардиомиопатий (М.Ф. Ди Карли, В. Сингх, С. Дивакаран, С. Кадди, С. Дорбала, Р. Гвиббини, М. Донди)
 Оценка воспаления и инфекции сердечно-сосудистой системы (Р. Гвиббини, Е. Милан, В. Сингх, М.Ф. Ди Карли, М. Донди, И. Карваял, Е. Александерсон, Ц. Роделла, Д. Паец)
 Новые приложения (М.Ф. Ди Карли, Р. Гвиббини, М. Уильямс, М. Бертоли, М. Донди, Д. Паец, Е. Милан)

Технические рекомендации для ПЭТ/КТ сердца

М.Ф. Ди Карли, Р. Гвиббини, Д. Альбано, Е. Милан, И. Карваял, Е. Александерсон, Д. Паец, М. Донди

Позитронно-эмиссионная томография (ПЭТ) это неинвазивный метод визуализации, в котором используются биологические молекулы, меченные позитрон-излучающими радионуклидами. В отличие от других методов визуализации, таких как компьютерная томография (КТ) и магнитно-резонансная томография (МРТ), которые предоставляют анатомическую или структурную информацию, ПЭТ позволяет получать уникальную количественную информацию о важных биологических процессах в живом организме *in vivo* (например, о перфузии и метаболизме миокарда, воспалении, иннервации, плотности рецепторов).

Помимо широкого применения ПЭТ в онкологии, данный метод визуализации сердца становится важным для выявления физиологически значимой ишемической болезни сердца (ИБС), оценки инфильтративных заболеваний (например, саркоидоза, амилоидоза), верификации жизнеспособности миокарда и инфекционного эндокардита. Современные системы ПЭТ сочетаются с КТ, которая предоставляет дополнительную информацию о распространенности атеросклероза и морфологии бляшек.

Уникальным преимуществом ПЭТ является его способность обеспечивать абсолютную количественную оценку кровотока в миокарде в миллилитрах в минуту на грамм (мл/мин/г) ткани миокарда. Как показано в этом атласе, количественная информация о кровотоке повышает диагностическую ценность ПЭТ-визуализации перфузии миокарда, улучшает стратификацию риска и помогает в ведении пациентов.

1.1. Общее описание позитронно-эмиссионных радиофармацевтических препаратов

ПЭТ-радионуклиды для визуализации перфузии миокарда

Рубидий-82 (Rubidium-82, Rb-82, ⁸²Rb) — меченый радиоактивным изотопом, используемый в ПЭТ для визуализации перфузии миокарда. Он представляет собой одновалентный катионный аналог калия, получаемый в генераторе из материнского радионуклида стронция-82 путем элюирования. Это наиболее часто используемый радиофармацевтический препарат для ПЭТ-визуализации перфузии миокарда, особенно в Соединенных Штатах Америки (США). Период полураспада стронция-82 составляет 25,5 дней, при этом образуются атомы рубидия-82 в результате захвата электронов. Физический период полураспада Rb-82 равен 76 с. Он элюируется обычным изотоническим раствором натрия хлорида с помощью насоса для элюации с компьютерным управлением, подключенного с помощью внутривенной системы непосредственно к пациенту. Генератор можно элюировать примерно каждые 10 мин, что позволяет очень быстро получать последовательную визуализацию миокарда в состоянии покоя и стресса. Учитывая сверхкороткий период полураспада Rb-82, выполнение нагрузочных проб с этим изотопом невозможно. Данный радиофармацевтический препарат с высокой эффективностью извлекается клетками миокарда из плазмы с помощью Na⁺, K⁺-АТФазного насоса. Экстракция Rb-82 из миокарда превосходит показатели перфузионных маркеров, меченных технецием-99т (^{99m}Tc), но уступает [¹³N]аммонию при высоких скоростях потока. Энергия позитронов, испускаемых при распаде Rb-82, намного выше, чем у ^{13}N

или изотопа фтора ¹⁸ F. Следовательно, расстояние между участком распада и участком аннигиляции (так называемый позитронный диапазон) выше для Rb-82, что негативно влияет на пространственное разрешение ПЭТ-изображений.

[¹³N]аммоний (Аммоний, 13№) обладает высокой эффективностью извлечения при первом проходе и высоком кровотоке в миокарде, что делает его идеальным для визуализации перфузии сердечной мышцы. Основным ограничением является то, что, учитывая период его полураспада, составляющий 9,96 мин, требуется наличие циклотрона и возможности радиохимического синтеза на месте. Недавно на рынке появились новые «настольные» циклотроны, потенциально позволяющие более широко использовать Аммоний, 13№ в клинических условиях. Этот коммерчески доступный мини-циклотрон с автоматизированным синтезом позволяет производить Аммоний, 13№ на месте без необходимости в более крупномасштабном производстве. После внутривенной инъекции радиофармацевтический препарат подвергается быстрой элиминации из крови с диффузией через клеточные мембраны и удерживанием внутри кардиомиоцита в результате необратимого ферментативного преврашения в глутаминовую кислоту. Задержка [¹³N]аммония в миокарде может быть неоднородной у некоторых пациентов с явными дефектами боковой стенки левого желудочка. Качество изображений, полученных при помощи [¹³N]аммония, также может ухудшаться из-за случайной повышенной активности печени, что может помешать оценке нижней стенки левого желудочка. Хотя секвестрация [¹³N]аммония в легких обычно минимальна, она может быть увеличена у пациентов с пониженной систолической функцией левого желудочка (ЛЖ) или хроническим заболеванием легких, а иногда и у курильщиков, что может препятствовать оценке состояния боковой стенки ЛЖ. Кроме того, относительно длительный период полураспада данного радиофармацевтичского препарата также позволяет сочетать его с нагрузочной пробой.

Радиоактивная вода, меченная O-15 ([¹⁵O]вода) это циклотронный продукт с физическим периодом полураспада 2,07 мин, представляющий собой свободно диффундирующий агент с очень высокой степенью включения миокардом в широком диапазоне миокардиальных кровотоков (МК). Степень извлечения радиофармацевтического препарата не зависит от его расхода, что делает его идеальным средством для количественной оценки кровотока в миокарде. Однако, поскольку это свободно диффундирующий индикатор, визуализация затруднена из-за его высокой концентрации в крови. Параметрические изображения потока можно использовать для определения наличия и степени регионарных дефектов перфузии, но они имеют относительно более низкое качество по сравнению с Rb-82 и [¹³N]аммонием. Генерация многокадровых синхронизированных изображений для расчета объемов ЛЖ и фракции выброса является сложной задачей и не выполняется рутинно.

Флурпиридаз (F-18) — это исследуемый индикатор перфузии, который в настоящее время проходит оценку в рамках III фазы клинических испытаний (¹⁸F-BMS747158-02, NCT03354273). Он обладает более высокой степенью включения миокардом при первом прохождении, чем [¹³N]аммоний и Rb-82. Период полураспада F-18, равный 108 мин, делает этот изотоп идеальным для распределения единичной дозы, тем самым облегчая более широкий доступ к ПЭТ-визуализации сердца без необходимости использования циклотрона на месте или генератора ⁸²Sr/⁸²Rb.

Метаболизм миокарда

 Φ тордезоксиглюкоза (Φ ДГ) — это аналог глюкозы, получаемый в циклотроне с соответствующими специализированными радиохимическими модулями. Относительно длительный период полураспада ФДГ позволяет производить ее за пределами медицинского учреждения и поставлять радиофармацевтический препарат в день исследования. Подобно обычной глюкозе, ФДГ транспортируется в миокард специфическими транспортерами глюкозы 1 и 4 (glucose transporter — GLUT1 и GLUT4) посредством облегченной диффузии. Внутри кардиомиоцита ФДГ подвергается фосфорилированию и захвату, что является маркером метаболизма глюкозы. ФДГ в настоящее время используют для оценки жизнеспособности миокарда и выявления воспаления/инфекции миокарда.

1.2. Протоколы проведения позитронно-эмиссионной томографии

На рис. 1.1 схематически изображены стандартные протоколы, используемые для визуализации перфузии миокарда с помощью ПЭТ/КТ. Со специальными протоколами для определения жизнеспособности миокарда можно ознакомиться в разделе 2.7, а с протоколами визуализации воспаления/ инфекции — в разделе 4.1.

Компьютерная томография. Позиционирование пациента выполняют с помощью контрольного изображения КТ или топограммы, за которым следует низкодозная скрининговая КТ, используемая для коррекции ослабления сигнала мягкими тканями. Параметры сбора данных для сканирования с передачей КТ варьируют в зависимости

Рис. 1.1. Схематическое изображение протоколов визуализации перфузии миокарда с помощью позитронно-эмиссионной томографии

от конфигурации КТ-сканера (например, 8, 16, 64 мультидетекторных КТ). Однако общие настройки сканирования включают низкую скорость вращения, относительно большой шаг, переменный потенциал трубки (например, 80-140 кВп в зависимости от размера пациента) и низкий ток трубки. Скрининговое КТ-сканирование не является синхронизированным и выполняется во время неглубокого свободного дыхания. У пациентов без выявленной ИБС обычно также проводят отдельную КТ без синхронизации для количественной оценки кальцификации коронарных артерий. При отсутствии КТ с неконтрастной синхронизацией кальцификацию коронарных артерий можно оценить полуколичественно на основе скрининговой КТ, полученной для коррекции поглощения излучения. У отдельных пациентов также возможно получить коронарную КТ-ангиографию (КТА) сразу после оценки перфузии миокарда, но для этого необходим, по крайней мере, 64-срезовый мультидетекторный КТ-сканер.

ПЭТ-сканирование. Дозу радиофармацевтического препарата следует корректировать в зависимости от массы тела пациента, оборудования и протокола сбора данных (например, 2D- или 3D-режим), а также протокола визуализации (например, одинаковая доза или протоколы с низкой или высокой дозой [¹³N]аммония). Существует несколько способов получения изображений эмиссионной перфузии.

- Синхронизированная с электрокардиограммой (ЭКГ) визуализация. Это наиболее распространенный клинический подход при использовании сканеров без возможности получения данных в режиме списка. Визуализация начинается через 90-120 с после введения радиомаркера, чтобы можно было обеспечить выведение радиоактивных маркеров из легких и кровеносного сосуда. Продолжительность сканирования зависит от типа оборудования (например, аналоговой или цифровой ПЭТ-камеры) и используемого радиофармацевтического препарата (например, около 7 мин для рубидия-82 и 10-15 мин для [¹³N]аммония). Количество синхронизированных кадров в рамке обычно устанавливают равным 8 или 16.
- Многокадровая, или динамическая, визуализация состоит из серии нескольких статических изображений с заранее заданными временными рамками. Визуализация начинается с болюсного введения и продолжается в течение 7—15 мин в зависимости от используемого радиофармацевтического препарата, как описано выше.
 Этот режим сбора данных необходим для количественной оценки кровотока в миокарде (в мл/мин/г).

- Визуализация в режиме списка. Это идеальный и наиболее распространенный подход при использовании современных ПЭТ-аппаратов. В режиме списка каждое событие фиксируют с указанием времени обнаружения и местоположения, а также с данными ЭКГ, что позволяет соотнести время события с сердечным циклом. Информацию о времени обнаружения используют для ретроспективного форматирования данных в несколько временных рамок после завершения сбора данных. Затем данные в режиме списка можно переформатировать множеством различных способов, включая статические или суммированные изображения, синхронизированные изображения и многокадровые или динамические изображения.
- . Визуализация нагрузочных проб. Ее обычно проводят с помощью фармакологических средств, чаще всего сосудорасширяющих (например, аденозина, дипиридамола или регаденозона (?) или, в качестве альтернативы, инотропов (например, добутамина). Как кратко упоминалось ранее, тестирование можно выполнять с [¹³N]аммонием, а в будущем — и с флурпиридазом ¹⁸F. Нагрузочные пробы невозможно выполнять с рубидием-82 или радиоактивной водой, меченной О-15. Важно иметь в виду, что протоколы нагрузочных проб в настоящее время не позволяют количественно оценить МК, который, как описано выше, требует сбора исходных данных о фазе артериального давления для создания функции артериального давления.

Последовательность визуализации перфузии миокарда

- Покой нагрузочная проба. Это наиболее распространенная последовательность. Учитывая ультракороткий период полураспада ⁸²Rb и [¹⁵О]воды, примерно одинаковую дозу используют для визуализации как в состоянии покоя, так и при нагрузочной пробе без необходимости ожидания снижения начальной дозы перед введением нагрузочной. При использовании [¹³N]аммония наиболее распространена одинаковая доза как для визуализации в состоянии покоя, так и при стресс-тесте. Такой подход требует немного более длительного ожидания между визуализацией в состоянии покоя и визуализацией при нагрузке, чтобы обеспечить радиоактивный распад начальной дозы (около 20-30 мин). С помощью современных ПЭТ/КТ можно выполнять низкодозную визуализацию в состоянии покоя и высокодозную нагрузочную без ожидания, что существенно (примерно на 35 мин) сокращает протокол.
- *Нагрузка-покой*. Некоторые лаборатории сначала проводят визуализацию при выполнении

нагрузочной пробы, поскольку отсутствие отклонений при первом исследовании может исключить необходимость в визуализации миокарда в состоянии покоя. Недостатком такого подхода является отсутствие возможности получить информацию о фракции выброса левого желудочка (ФВЛЖ) в состоянии покоя и напряжения или о резерве кровотока в миокарде, которая улучшает диагностику, стратификацию риска и ведение пациента, как описано в обсуждениях на основе конкретных случаев.

 Только для нагрузочной пробы. Ознакомьтесь с ограничениями, приведенными выше. Возможно, этот протокол идеально подходит для пациентов, проходящих ПЭТ-визуализацию перфузии миокарда при физической нагрузке.

Рекомендуемая литература

- Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, Corbett JR. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Cardiol. 2017;25(1):269–297.
- Dilsizian V, Bacharach SL, Beanlands RS et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23:1187–1226.

Примеры исследований, проведенных с инфузией ⁸²Rb, [¹³N]аммония и [¹⁵O]воды

Пример 1: ПЭТ с визуализацией перфузии миокарда с использованием [¹³N]аммония

Анамнез

- Мужчина 59 лет с артериальной гипертензией, дислипидемией, сахарным диабетом и ожирением без известной ИБС.
- Направлен на ПЭТ/КТ с визуализацией перфузии миокарда с [¹³N]аммонием в состоянии покоя/стресса для оценки атипичной стенокардии и одышки (рис. 1.2, 1.3).

Изображения ПЭТ/КТ (см. рис. 1.2, 1.3)

Полученные данные

- Изображения в покое и после стресса демонстрируют нормальную перфузию миокарда.
- Количественный кровоток в миокарде и резерв кровотока находятся в норме как на регионарном, так и на глобальном уровне.
- ФВЛЖ в покое составила 59% и увеличилась до 64% при нагрузке.

Рис. 1.2. Изображения перфузии миокарда в состоянии покоя и нагрузочной пробы с регаденозоном ⁶, полученные с использованием [¹³N]аммония в качестве индикатора перфузии. Расположение изображений: по короткой оси (вверху), горизонтальной длинной оси (посередине) и вертикальной длинной оси (внизу) сердце с изображениями нагрузочной пробы в верхней части каждой пары. Изображения демонстрируют нормальную регионарную перфузию миокарда. Часто наблюдается изолированный небольшой дефект на нижнеапикальном сегменте, отражающий эффект частичного объема (апикальное истончение) и не представляющий собой патологическую находку

Рис. 1.3. Вверху: кривые активность—время для сосудистой фазы (темно- и светло-зеленые кривые) и ткани миокарда (желтые и красные кривые) для изображений перфузии миокарда в состоянии стресса и покоя. Внизу: измерения кровотока в миокарде (мл/мин/г) в покое и во время нагрузочного теста с регаденозоном[®] для каждой коронарной артерии и для всего левого желудочка. Показан также резерв кровотока в миокарде (сравнение с кровотоком миокарда в покое). Результаты показывают нормальную максимальную скорость кровотока (>1,8 мл/мин/г) и резерв кровотока (>2) во всех коронарных зонах и для всего левого желудочка

 Объемы ЛЖ были в норме (значения не показаны).

Дифференциальная диагностика

- ИБС с обструкцией коронарных артерий.
- Коронарная микрососудистая дисфункция.

Корреляционная визуализация

• Отсутствует.

Тактика ведения

• Переоценка и управление факторами риска.

Обучающие моменты

- ПЭТ-исследование визуально нормальной перфузии миокарда с нормальным нагрузочным кровотоком в миокарде и резервом кровотока имеет очень высокую чувствительность и отрицательное прогностическое значение для исключения ИБС, ограничивающей кровоток.
- Нормальный резерв кровотока в миокарде исключает возможность ИБС с обструкцией коронарных сосудов и дисфункцию коронарных микрососудов.

Рекомендуемая литература

Murthy V, Bateman T, Beanlands R, Berman D, Borges-Neto S, Chareonthaitawee P et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Cardiol. 2017;25:269–297.

- Ziadi M, deKemp R, Williams K, Guo A, Renaud J, Chow B et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease?. J Nucl Cardiol. 2012;19:670–680.
- Naya M, Murthy V, Taqueti V, Foster C, Klein J, Garber M et al. Preserved coronary Flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55:248–255.

Пример 2: ПЭТ с визуализацией перфузии миокарда с использованием ⁸²Rb

Анамнез

- Мужчина 72 лет с жалобами на одышку при физической нагрузке.
- Артериальная гипертензия, сахарный диабет и ожирение в анамнезе.
- Направлен на ПЭТ/КТ с визуализацией перфузии миокарда в состоянии покоя/стресса для оценки возможной ИБС с обструкцией коронарных сосудов.

Результаты

- Изображения перфузии миокарда в покое и при нагрузке не демонстрируют признаков регионарных нарушений перфузии (рис. 1.4).
- Количественные показатели МК и резерва миокардиального кровотока (РМК) (референсные значения >2) являются нормальными как на регионарном, так и на глобальном уровне (рис. 1.5).

Рис. 1.4. Изображения перфузии миокарда в состоянии покоя и при выполнении нагрузочной пробы с регаденозоном [℘], полученные с использованием ⁸²Rb в качестве индикатора перфузии. Изображения отображаются по короткой оси (вверху), горизонтальной длинной оси (посередине) и вертикальной длинной оси (внизу) сердца с изображениями нагрузочной пробы в верхней части каждой пары. Изображения демонстрируют нормальное и однородное распределение радиофармацевтического препарата по всему левому желудочку без регионарных дефектов перфузии

16

Рис. 1.5. Результаты показывают нормальную максимальную скорость миокардиального кровотока при нагрузке (>1,8 мл/мин/г) и резерв миокардиального кровотока (>2) для всех коронарных артерий левого желудочка

Измерения МК (мл/мин/г) в покое и во время нагрузочного теста с регаденозоном *в* для каждой коронарной артерии и для всего ЛЖ представлены на **рис. 1.3**. Показан также РМК (нагрузочная проба по сравнению с МК в покое).

Дифференциальная диагностика

• Отсутствует.

Корреляционная визуализация

• Отсутствует.

Тактика ведения

• Переоценка и управление факторами риска.

Обучающие моменты

- Как обсуждалось в случае 1 с [¹³N]аммонием, нормальные результаты визуального исследования перфузии миокарда с помощью ПЭТ с ⁸²Rb при нормальном МК и функциональном РМК во время нагрузочной пробы имеют очень высокую чувствительность и отрицательную прогностическую ценность для исключения ИБС, ограничивающей кровоток.
- Нормальный РМК исключает коронарную микроваскулярную дисфункцию.

Рекомендуемая литература

Mc Ardle B, Dowsley T, deKemp R, Wells G, Beanlands R. Does Rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? J Am Coll Cardiol. 2012;60:1828–1837.

- Parker M, Iskandar A, Limone B, Perugini A, Kim H, Jones C et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate metaanalysis. Circ: Cardiovasc Imaging. 2020;5:700–707.
- Neglia D, Rovai D, Caselli C, Pietila M, Teresinska A, Aguadé-Bruix S et al. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging. Circ: Cardiovasc Imaging. 2015;8.
- Takx R, Blomberg B, Aidi H, Habets J, de Jong P, Nagel E et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ: Cardiovasc Imaging. 2015;8. https://doi.org/10.1161/ CIRCIMAGING.114.002666.

Благодарность

Изображения, полученные с ⁸²Rb, любезно предоставлены доктором Муазом Аль-Маллахом (Mouaz Al-Mallah), Методистская больница, Хьюстон, Техас.

Пример 3: ПЭТ с визуализацией перфузии миокарда с использованием [¹⁵0]воды

Анамнез

 Женщина 59 лет с гиперлипидемией, артериальной гипертензией, ожирением и гипертиреозом в анамнезе была направлена на ПЭТ/КТ для оценки перфузии миокарда с [¹⁵О]водой в состоянии покоя/стресса для оценки атипичной стенокардии и слабости (рис. 1.6, 1.7).

Рис. 1.6. Изображения перфузии миокарда в состоянии покоя и нагрузочного теста с регаденозоном ^(p), полученные с использованием [¹⁵O]воды в качестве индикатора перфузии. Расположение изображений: по короткой оси (вверху), горизонтальной длинной оси (посередине) и вертикальной аксиальной оси (внизу) сердца с изображениями нагрузочной пробы в верхней части каждой пары. Изображения демонстрируют нормальное и однородное распределение радиофармацевтического препарата по всему левому желудочку без регионарных дефектов перфузии

Рис. 1.7. Вверху: параметрические полярные карты, отображающие сегментарные значения миокардиального кровотока для изображений перфузии миокарда при нагрузке сосудорасширяющими средствами и в состоянии покоя, полученные с [¹⁵O]водой. Цвет на полярных картах соответствует значению миокардиального кровотока. Полярная карта в правом верхнем углу показывает соответствующий резерв миокардиального кровотока. Внизу: соответствующие значения миокардиального кровотока покоя и нагрузки, а также резерв миокардиального кровотока

Изображения ПЭТ/КТ (см. рис. 1.6, 1.7)

Полученные данные

- Изображения параметрического кровотока в покое и при нагрузке демонстрируют нормальную перфузию миокарда. Параметрические изображения масштабируются до максимального значения кровотока, отсюда и различия относительной интенсивности на изображениях стресса и покоя.
- Количественные параметры перфузии миокарда и резерва кровотока находятся в норме как на регионарном, так и на глобальном уровне.

Дифференциальная диагностика

- ИБС с обструкцией коронарных сосудов.
- Коронарная микрососудистая дисфункция.

Корреляционная визуализация

• Отсутствует.

Ведение

• Переоценка и управление факторами риска.

Обучающие моменты

- ПЭТ-исследование визуально нормальной перфузии миокарда с нормальными значениями МК и РМК при нагрузке обладает очень высокой чувствительностью и отрицательной прогностической ценностью для исключения ИБС, ограничивающей кровоток. Более того, недавнее исследование сравнительной эффективности продемонстрировало, что количественная ПЭТ-перфузия миокарда с [15О]водой обладает наивысшей точностью диагностики и исключения ИБС с обструкцией коронарных сосудов по сравнению с компьютерной коронарографией с определением фракционного резерва кровотока или без него и ОФЭКТ с визуализацией перфузии миокарда (см. список рекомендуемой литературы).
- Нормальный резерв кровотока в миокарде также исключает возможность дисфункции коронарных микрососудов.

Рекомендуемая литература

- Danad I, Raijmakers P, Driessen R, Leipsic J, Raju R, Naoum C et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol. 2017;2:1100–1107.
- Driessen R, Danad I, Stuijfzand W, Raijmakers P, Schumacher S, van Diemen P et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am Coll Cardiol. 2019;73:161–173.

Благодарность

Изображения, полученные при помощи [¹⁵O]воды, любезно предоставлены доктором Дж. Генрихом Хармсом (Henrich Harms) и Йенсом Соренсеном (Jens Sorensen), Университет Уппсалы, Швеция.

1.4. Распознавание артефактов и устранение неполадок

1.4.1. Неправильная регистрация

Пример 4

Анамнез

 Мужчина 57 лет без ИБС в анамнезе направлен на перфузионную ПЭТ/КТ миокарда в состоянии покоя/стресса для оценки атипичной стенокардии (рис. 1.8, 1.9).

Изображения ПЭТ/КТ (см. рис. 1.8, 1.9)

Полученные данные

- Полученные при выполнении нагрузочной пробы восстановленные изображения демонстрируют дефект перфузии среднего размера выраженной интенсивности, затрагивающий переднебоковую стенку (стрелки), показывающий полную обратимость.
- Однако проверка изображений с эмиссией и трансмиссией КТ демонстрирует несоответствие между двумя наборами данных, при этом переднебоковая стенка перекрывает поле легкого на изображениях КТ.
- Исправление смещения эмиссионной/КТ трансмиссии привело к устранению дефекта перфузии и получению нормального изображения.

Дифференциальная диагностика

 ИБС с обструкцией коронарных сосудов с ишемией миокарда в бассейне одного коронарного сосуда.

Корреляционная визуализация

• Отсутствует.

Тактика ведения

• Переоценка и управление факторами риска.

Обучающие моменты

- Тщательный контроль сопоставления излучения/трансмиссии КТ является важнейшим этапом контроля качества при оценке изображения ПЭТ/КТ сердца.
- Выявленное смещение должно быть скорректировано, и изображения повторно реконструированы