ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
1. КОМПЬЮТЕРНАЯ ГРАФИКА И ПРОГРАММА РНОТОЅНОР	5
1.1. Компьютерная графика	5
1.2. Интерфейс Adobe Photoshop CS6	12
1.3. Палитра инструментов	21
2. ПОРТРЕТ	34
2.1. Цветокоррекция фотографии	34
2.2. Три способа убрать красные глаза	
2.3. Ослепительная улыбка	43
2.4. Как убрать дефекты кожи	47
2.5. Работа с фоном изображения	53
2.5.1. Как сделать фон фотографии размытым	53
2.5.2. Замена фона фотографии	56
2.6. Виньетка	62
2.7. Портрет в рамке	
3. СТАРЫЕ ФОТОГРАФИИ	
3.1. Ретушь старой фотографии	
3.2. Как сделать черно-белую фотографию цветной	76
3.3. Искусственное старение — эффект сепии	82
4. ПРЕОБРАЗОВАНИЕ ФОТОГРАФИЙ	86
4.1. Создание эффекта карандашного рисунка	86
4.2. Карикатура	94
4.3. Коррекция фигуры	
4.4. Фотомонтаж	
5. ДОПОЛНИТЕЛЬНЫЕ ВОЗМОЖНОСТИ	108
5.1. Как сохранить изображение для Web	108
5.2. Пакетная обработка фотографий	114
СПИСОК ЛИТЕРАТУРЫ	120

ВВЕДЕНИЕ

Фотоиллюстрации — важный элемент дизайна издания. Без фотографий газета, журнал, сайт выглядят скучными и проигрывают в конкурентной борьбе иллюстрированным изданиям. Снимки начинают играют роль заголовков, привлекающих внимание читателей. Они в не меньшей степени возбуждают любопытство и стимулируют внимание аудитории.

Все чаще появляются издания, в которых визуальная информация становится равнозначной вербальной, придавая ему эстетическую завершенность.

Анализ публикуемых фотографий позволяет выделить ряд технических приемов цифровой обработки изображений, получивших в последнее время широкое распространение. К их числу, в частности, относятся:

- наклон горизонтальных и вертикальных линий в кадре, имитирующий наклон камеры при съемке;
- виньетирование путем затемнения или высветления углов и периферийных областей кадра в процессе его компьютерной обработки;
- размытие отдельных областей фотоснимка (при портретной съемке фона), имитирующее малую глубину резкости;
- добавление к фотографии всевозможных графических элементов (рамок, линий, дорисовок и надписей), а иногда и полная смена фона;
- использование специальных приемов ретуши портретных фотографий, позволяющих избавиться от некоторых дефектов облика объекта;
- намеренная цветовая коррекция, делающая цвета на снимке более яркими.

Любой из перечисленных приемов, если он применен обоснованно, использован к месту и аккуратно, может усилить художественность и выразительность кадра. Но отсутствие вкуса и чувства меры, часто в сочетании с недостаточно грамотной работой в графических редакторах, приводит к тому, что эти эффекты полностью уничтожают какую-либо художественную или смысловую ценность фотографии.

Сегодня технические приемы дополнительной обработки фотографий стали востребованы и весьма популярны. Это обусловлено тем, что сегодня функции фотокорреспондентов возлагают на сотрудников, не обладающих достаточным опытом в фотографии или создании графических изображений, и выручить в такой ситуации может только грамотная цифровая обработка публикуемых изображений.

Все вышесказанное послужило основой для разработки программы обучения основам современных компьютерных технологий цифровой обработки изображений в среде графического редактора Adobe Photoshop CS6. Базовым приемам цифровой обработки изображений и посвящено настоящее учебнометодическое пособие.

1. КОМПЬЮТЕРНАЯ ГРАФИКА И ПРОГРАММА РНОТОЅНОР

1.1. Компьютерная графика

В зависимости от способа формирования изображения компьютерную графику разделяют на растровую, векторную и фрактальную.

Растровая графика

Растровое изображение состоит из множества точек — пикселей.

Пиксель — точка растра экранного изображения. Все изображения делятся на точки. Каждый пиксель содержит информацию о цвете, яркости и прозрачности. Размер пикселей очень мал, поэтому человеческий глаз воспринимает изображение целиком, не разделяя на пиксели.

Для растровой графики важной характеристикой является разрешение изображения — количество точек на единицу измерения.

Достоинства:

- цвет передается четко, близким к реальному;
- может храниться дополнительная информация: об авторе файла, фотокамере и ее настройках, количестве точек на дюйм при печати и др.

Недостатки:

- большой объем файлов;
- сложности масштабирования изображения. При увеличении появляется зернистость, при уменьшении происходит потеря пикселей (рис. 1.1).

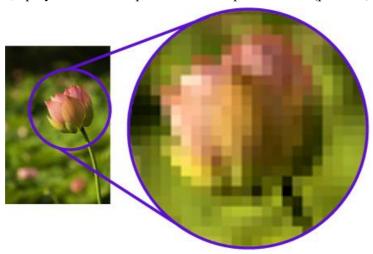


Рис. 1.1

Излучаемый свет — это свет, выходящий из источника, например, Солнца, лампочки или экрана монитора. Излучаемый свет сохраняет в себе все цвета, из которых он создан.

Отраженный свет — это свет, «отскочивший» от поверхности объекта. Именно его мы видим, когда смотрим на какой-либо предмет, не являющийся

источником света. Этот свет изменяется при отражении от объекта, так как часть спектра поглощается.

Для построения цветовых моделей используются законы Грассмана.

Первый закон Грассмана (закон трехмерности). Любой цвет однозначно выражается тремя составляющими, если они линейно независимы. Линейная независимость заключается в невозможности получить любой из этих трех цветов сложением двух остальных.

Второй закон Грассмана (закон непрерывности). При непрерывном изменении излучения цвет смеси также меняется непрерывно. Не существует такого цвета, к которому нельзя было бы подобрать бесконечно близкий.

Третий закон Грассмана (закон аддитивности). Цвет смеси излучений зависит только от их цвета, но не спектрального состава.

Цветовая модель RGB (рис. 1.2). Цвет получается при объединении (суммировании) трех основных цветов — красного, зеленого и синего (Red, Green, Blue).

RGB — это трехканальная цветовая модель. Интенсивность цвета в каждом канале задается числовым значением от 0 до 255.

Если интенсивность всех основных цветов имеет значение 255, то получается белый цвет. Отсутствие всех трех цветов (интенсивность 0) дает черный цвет.

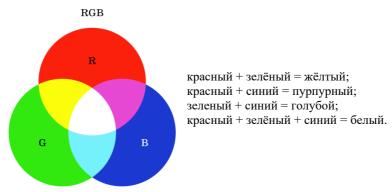


Рис. 1.2

Цветовая модель СМҮК (рис. 1.3). В процессе чтения напечатанного текста свет отражается от листа бумаги. Поэтому для печати графических изображений используется система цветов, работающая с отраженным светом.

В этой системе цветов основными являются голубой (С — Cyan), пурпурный (М — Magenta) и желтый (Y — Yellow). Каждый из них поглощает (вычитает) определенные цвета из белого света, падающего на печатаемую страницу.

Рис. 1.3

Смешивая основные цвета в разных пропорциях на белой бумаге, можно создать большое многообразие оттенков.

Белый цвет получается при отсутствии всех трех основных цветов. Высокое процентное содержание голубого, пурпурного и желтого образует теоретически черный цвет, а на самом деле грязно-коричневый, поэтому при печати изображения добавляется еще черная краска (К — Black).

Цветовая модель HSB. Модели RGB и CMYK базируются на ограничениях, накладываемых аппаратным обеспечением. Более интуитивным способом описания цвета является его представление в виде тона (Hue), насыщенности (Saturation) и яркости (Brightness). *Тон* — конкретный оттенок цвета: красный, желтый, зеленый, пурпурный и т. п. *Насыщенность* характеризует «чистоту» цвета: уменьшая насыщенность, мы «разбавляем» его белым цветом. *Яркость* же зависит от количества черной краски, добавленной к данному цвету: чем меньше черноты, тем больше яркость цвета (рис. 1.4).

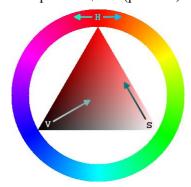


Рис. 1.4

Качество изображения для растрового файла определяется двумя основными параметрами: размером пикселя и точностью передачи реального цвета или глубиной цвета.

Глубина цвета — объем памяти в количестве бит, используемых для хранения и представления цвета при кодировании одного пикселя растровой

графики. Количество бит говорит о количестве градаций в каждой цветовой составляющей или просто о количестве цветов. Например:

- -1-битный цвет $2^1 = 2$ цвета, чаще всего черный и белый;
- 2-битный цвет $2^2 = 4$ цвета;
- 3-битный цвет $2^3 = 8$ цветов;
- -4-битный цвет $2^4 = 16$ цветов;
- 5-битный цвет $2^5 = 32$ цвета;
- 6-битный цвет $2^6 = 64$ цвета;
- -8-битный цвет $2^8 = 256$ цветов.

В модели RGB используются три канала: красный, зеленый и синий. Если каждый канал использует 4 бита и может отобразить 16 цветов, то в данной модели можно будет отобразить $16 \times 16 \times 16 = 4096$ цвета, а глубина цвета в этом случае составит $4 \times 3 = 12$ бит.

Форматы хранения изображений

Формат РСХ. Простейший растровый формат. Первоначально этот формат использовался в программе PaintBrush. С самого «рождения» формат был ориентирован на существующие видеоадаптеры и поэтому является аппаратнозависимым. В РСХ используется схема сжатия данных RLE, где последовательность повторяющихся пикселей заменяется парой — величиной цвета и количеством повторений. Это позволяет уменьшить размер файла на 40–70%, если используется 16 и менее цветов, и на 10–30% для 256-цветных изображений.

Характеристики РСХ:

- поддержка сжатия: без потерь;
- поддержка прозрачности: отсутствует;
- поддержка анимации: отсутствует;
- поддержка черезстрочного отображения: отсутствует;
- глубина цвета: 24 бита;
- совместимость: все платформы.

Формат BMP (Bit Map). В этом формате первоначально использовалось простейшее кодирование — по пикселям (самое неэкономное), которые обходились последовательно по строкам, начиная с нижнего левого угла графического изображения.

В этом формате использовалось только 256 цветов, т. е. пиксель представляется только одни байтом. В дальнейшем формат стал использоваться и для сохранения полноцветных изображений.

Характеристики ВМР:

- поддержка сжатия: есть возможность использования сжатия без потерь;
- поддержка прозрачности: отсутствует;
- поддержка анимации: отсутствует;
- поддержка черезстрочного отображения: отсутствует;
- глубина цвета: 48 бит;
- совместимость: только Windows.

Формат TIFF (Taged Image File Format). Формат относится к числу наиболее универсальных и распространенных форматов растровой графики. Может хранить графику в монохромном виде, в RGB и CMYK цветовых представлениях и поэтому является стандартным для издательских систем, обеспечивая лучшее качество печати.

Формат включает в себя внутреннюю компрессию. Он имеет открытую архитектуру — предусмотрена возможность объявления в заголовке сведений о типе изображения. В формате сохраняется и сопроводительная информация передаваемых изображений (подписи и пр.).

Характеристики TIFF:

- поддержка сжатия: поддерживает возможность применения различных алгоритмов сжатия;
 - поддержка прозрачности: отсутствует;
 - поддержка анимации: отсутствует;
 - поддержка черезстрочного отображения: отсутствует;
 - глубина цвета: до 96 бит;
 - совместимость: все платформы.

Формат GIF (Graphic Interchamge Format). Формат обмена графическими данными. Отличается от других форматов тем, что он долгое время поддерживается в Интернете. Использует до 256 цветов.

Формат изображения GIF не зависит от браузера и платформы. Позволяет создавать прозрачные и анимационные изображения. В GIF-изображениях используется сжатие без потери информации по алгоритму Лемпела — Зива — Велча (LZW).

Алгоритм LZW сжимает данные путем поиска одинаковых последовательностей (они называются фразы) во всем файле. Выявленные последовательности сохраняются в таблице, им присваиваются короткие маркеры (ключи), которые затем и сохраняются.

Характеристики GIF:

- поддержка сжатия: без потерь;
- поддержка прозрачности: да;
- поддержка анимации: да;
- поддержка черезстрочного отображения: да;
- глубина цвета: 24 бита;
- совместимость: все платформы.

Формат JPEG (Joint Photographic Expert Group). Формат предназначен для хранения изображений со сжатием. Практически является стандартом хранения полноцветных изображений. Применяющийся в нем алгоритм сжатия изображений разработан группой экспертов в области фотографии и является одним из самых мощных.

Перед применением алгоритма сжатия изображение делится на прямоугольные области размером 8×8, внутри которых сжатие осуществляется за счет плавного изменения цветов в изображении. При этом происходит потеря информации, так как из изображения исключаются данные, которые человеческий глаз не в состоянии увидеть (незначительные изменения в цвете). При сжатии есть риск получить нечеткое, размытое изображение с искажением деталей. Алгоритм обеспечивает высокий коэффициент сжатия, значение которого достигает 100 и зависит от допустимого уровня потерь изобразительной информации.

Характеристики JPEG:

- поддержка сжатия: сжатие с потерями;
- поддержка прозрачности: отсутствует;
- поддержка анимации: отсутствует;
- поддержка черезстрочного отображения: да;
- глубина цвета: 24 бита;
- совместимость: все платформы;

Формат PNG (Portable Network Graphics). Формат предназначен для хранения растровой графики, использующий сжатие без потерь. PNG — это свободный формат, поэтому получил широкое распространение. Позволяет сохранять файлы меньше по объему, чем в GIF.

Характеристики PNG:

- поддержка сжатия: сжатие без потерь;
- поддержка прозрачности: да;
- поддержка анимации: да;
- поддержка черезстрочного отображения: да;
- глубина цвета: 48 бит;
- совместимость: все платформы.

Формат WMF (Windows Metafile Format). Формат используется для обмена графическими данными между приложениями Microsoft Windows. В WMF файлах могут хранится как векторные, так и растровые изображения. Глубина цвета до 24 бит.

Формат PSD (PhotoShop Document). Внутренний формат для пакета Adobe Photoshop. Он позволяет записывать готовое растровое изображение со многими слоями, дополнительными цветовыми каналами, масками и прочей информацией. Он может сохранить свои файлы с компрессией, никак не сказывающейся на качестве изображения при заметном уменьшении размера. Поддерживает все типы графики.

Векторные изображения

Векторные изображения состоят из элементарных геометрических объектов, таких как точки, линии, круги, многоугольники и так далее. В основе их контуров лежат математические уравнения, сообщающие устройствам как рисовать отдельные объекты. Эти объекты составляют фигуры, а уже они, в свою очередь, заполняются цветом.

Такая графика создается с помощью специализированных программ, например, Adobe Illustrator и Corel Draw. Нужно обладать специальными навыками пользования этими программами, а также умением рисовать.

Векторные изображения преимущественно создаются для индустрии рекламы и дизайна.

Достоинства:

- масштабирование изображений происходит без потери качества (рис. 1.5);

Рис. 1.5

- размер файла в разы меньше растрового;
- можно трансформировать изображение в растровое без потери.
 Недостатки:
- векторная графика не годится для создания реалистичных картин и фотографий.

Фрактальные изображения

Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому. Одним из основных свойств фракталов является самоподобие. Объект называют *самоподобным*, когда увеличенные части объекта походят на сам объект и друг на друга. Перефразируя это определение, можно сказать, что в простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале.

В центре фрактальной фигуры находится ее простейший элемент — равносторонний треугольник со сторонами а, который получил название фрактальный. Затем на среднем отрезке сторон строятся равносторонние треугольники со стороной, равной 1/3a от стороны исходного фрактального треугольника.

Изменяя и комбинируя окраску фрактальных фигур, можно моделировать образы живой и неживой природы (например, ветви дерева или снежинки), а также составлять из полученных фигур некоторую композицию (рис. 1.6).

Фрактальная графика, так же как векторная и трехмерная, является вычисляемой. Ее главное отличие в том, что изображение строится по уравнению или системе уравнений. Поэтому в памяти компьютера для выполнения всех вычислений ничего, кроме формулы, хранить не требуется.

Рис. 1.6

Достоинства:

- малый размер файла;
- бесконечная масштабируемость;
- простота построения сложных фигур;
- относительная легкость в создании сложных композиций;
- фотореалистичность.

Недостатки:

- неосвоенность технологии;
- плохое распространение и поддержка различными системами;
- небольшой спектр создания объектов изображений.

1.2. Интерфейс Adobe Photoshop CS6

На рисунке 1.7 приведена типовая схема интерфейса программы Photoshop: Для краткости ее называют «рабочая область». Именно в ней работают

над изображением. В ней помещается открытый файл, в ней его корректируют, в ней же открываются окна различных менюшек.

Некоторые возможности рабочей области.

- 1. Для того чтобы открыть файл, не обязательно идти в меню «Файл Открыть» и даже «горячие» клавиши Ctrl—О не самый быстрый способ. Достаточно дважды кликнуть на рабочей области программы, как тут же появится окно открытия файла.
- 2. Если вы хотите получить больше места для вашего изображения, то нажатием клавиши F вы циклично будете изменять вид рабочей области, вплоть до полноэкранного на черном фоне. Прокрутка видов рабочей области в обратном порядке Shift–F.

- 3. Когда вам нужно увеличить рабочую область на весь экран, убрав все «лишнее», в т. ч. панель инструментов, панель опций и все палитры рабочей среды, то просто нажмите Таb. Получите одну большую рабочую область. Повторное нажатие вернет все на место.
- 4. Если у вас открыто несколько файлов, то переключаться между ними можно нажатием Ctrl–Tab, а в обратном порядке Shift–Tab.

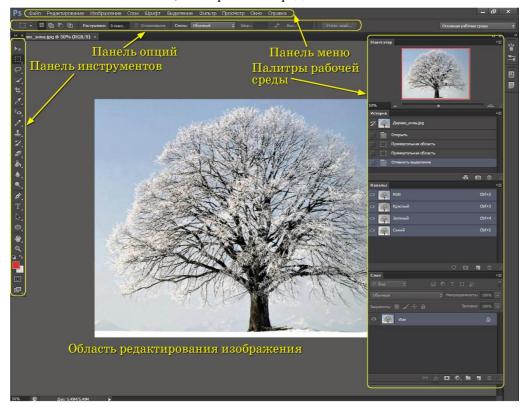


Рис. 1.7 Панель меню

Внешний вид панели меню приведен на рисунке 1.8.

Рис. 1.8

Панель «Меню» — это непаханое поле для любителей пошарить мышкой. Но всегда легко убедиться, что 80% из размещенного там либо не понадобится вообще, либо эти функции можно вызывать по-другому.

«Файл» — здесь открываются/сохраняются/закрываются файлы, импортируют и экспортируют их, производят пакетную обработку, выводят на печать и т. д.

«Редактирование» — большая часть возможностей этого меню обычно не требуется. Но есть в меню «Редактирование» и нужные, очень полезные вещи. Такие как «Трансформирование», «Настройка цветов», «Назначение про-

филя», «Преобразование в профиль», «Клавиатурные сокращения» («горячие» клавиши) и «Установки программы».

«Изображение» — в этом меню полезного немало. В работе часто используется подменю «Режим», задающий цветовую модель изображения и разрядность цвета на канал; подменю «Коррекция» — это «полка» с инструментами. Из оставшихся пунктов в этом меню нам также понадобятся «Размер изображения» и «Размер холста», «Внешний канал» и «Вычисления».

«Слои» — все для работы со слоями. Меню почти «бесполезное», так как все необходимые функции, расположенные в нем, быстрее вызываются «горячими» клавишами.

«*Шрифт*» — команды, позволяющие установить параметры используемого шрифта, а также стили символов и абзацов.

«Выделение» — можем спокойно пропустить это меню. Одну-две функции из него мы если и будем использовать, то вызовем их по-другому.

« Φ ильтр» — здесь находятся подключаемые модули программы — плагины.

«Просмотр» — первый блок этого меню посвящен цветоделению, выводу фотоформ для офсетной печати. Остальные функции, такие как функции масштабирования изображения, линейки, работа с направляющими, часто используются, но не через это меню.

«Окно» — здесь указываются те палитры (панели), которые будут отображаться в окне программы, формируя рабочую среду. В самом низу меню «Окно» расположены открытые в данный момент файлы. А активный файл, который вы видите на рабочей области, выделен «галочкой».

«Справка» — стандартное для всех программ меню, но имеет пару интересных строк.

«О внешнем модуле» — полная информация о версиях установленных плагинов.

«*Информация о системе*» — открывает окно с конфигурацией вашего компьютера, используемой памятью под Photoshop, установленным «железом», размещением рабочих папок, со списком всех-всех плагинов и т. п.

Панель инструментов и панель опций

Эти две панели невозможно рассматривать отдельно друг от друга, поскольку содержимое панели опций напрямую зависит от выбранного инструмента. Выбирая какой-либо инструмент, мы видим, что на панели опций появляются свойства и параметры данного инструмента, т. е. эта панель каждый раз меняет свой облик.

На рисунке 1.9 приведена панель опций, когда выбран один из инструментов, пусть это будет инструмент «*Карандаш*».

Рис. 1.9