Содержание

Предисловие 5
1. Выражения
1.1. Рациональные выражения 7
1.2. Выражения, содержащие степени
1.3. Выражения с корнями
1.4. Логарифмические выражения
1.5. Тригонометрические выражения
2. Уравнения
2.1. Рациональные уравнения 67
2.2. Иррациональные уравнения
2.3. Показательные уравнения
2.4. Логарифмические уравнения
2.5. Тригонометрические уравнения 108
2.6. Смешанные уравнения 122
2.7. Уравнения с параметрами
2.8. Общие принципы решения уравнений
с одинаковыми компонентами действий
3. Неравенства141
3.1. Рациональные неравенства 143
3.2. Показательные неравенства
3.3. Логарифмические неравенства
3.4. Неравенства с параметрами
4. Текстовые задачи
4.1. Простейшие текстовые задачи
4.2. Задачи на части, проценты и пропорции 207

4.3. Задачи на математическое округление, на округление с недостатком и с избытком
4.4. Задачи на движение по прямой
и на работу
4.5. Задачи, связанные с течением реки 256
4.6. Задачи на движение
по окружности
4.7. Задачи на совместную работу
4.8. Задачи на среднее значения двух величин
(средняя скорость, средняя концентрация, средняя
производительность)
4.9. Задачи на арифметическую прогрессию 278
4.10. Прикладные задачи из разных областей науки 283
4.11. Финансовые задачи
4.11.1. Задачи на кредиты с аннуитетными
платежами 318
4.11.2. Задачи на кредиты
с дифференцированными платежами
4.11.3. Задачи на банковские вклады 346
5. Теория вероятностей
Ответы

Предисловие

Сборник «Тематический тренинг для подготовки к единому государственному экзамену» быстро и качественно подготовит выпускников к $E\Gamma \Im$ по математике базового и профильного уровней.

В книге содержится тренировочный учебный материал по темам, включенным в экзаменационную работу:

- · «Выражения»,
- · «Уравнения»,
- · «Неравенства»,
- «Текстовые задачи»,
- · «Теория вероятностей».

В пособии приводятся образцы экзаменационных заданий на соответствующие темы, которые включены в демонстрационный вариант КИМ (контрольных измерительных материалов). Это даёт возможность выпускникам заранее познакомиться с экзаменационными материалами, а также проверить собственные знания по тем или иным разделам математики, повторить и закрепить изученное.

Для более качественной подготовки к экзамену все задания в книге даны с подробным разбором решений и методическими рекомендациями по их выполнению.

К некоторым разделам пособия представлены справочные материалы с основными формулами.

В разделе «Неравенства» особое внимание уделяется методам рационализации и интервалов. А в раздел «Текстовые задачи» вошли также прикладные задачи из разных областей науки и задачи на финансовую грамотность (кредиты и вклады).

Для удобства работы с пособием в конце даны ответы на задания для самостоятельного решения.

В связи с возможными изменениями в формате и количестве заданий рекомендуем в процессе подготовки к экзамену обращаться к материалам сайта официального разработчика экзаменационных заданий — Федерального института педагогических измерений: www.fipi.ru

Желаем всем выпускникам успехов на экзаменах!

Авторы

1. Выражения

1.1. Рациональные выражения

СВОЙСТВА СЛОЖЕНИЯ И УМНОЖЕНИЯ				
Переместительное свойство сложения	a+b=b+a			
Сочетательное свойство сложения	(a+b)+c=a+(b+c)			
Переместительное свойство умножения	ab = ba			
Сочетательное свойство умножения	(ab)c = a(bc)			
Распределительное свойство умножения относительно сложения	a(b+c) = ab + ac			

Общие правила при действиях с 0 и 1				
a + 0 = a				
a-0=a				
a - a = 0				
$a \cdot 1 = a$				
a:1=a				
a:a=1				
$a \cdot 0 = 0$				
0: a = 0				
a:0 — нет числового решения				

Проверка результатов арифметических действий с помощью остатков от деления на 9

Действия

- Остаток любого числа от деления на 9 можно получить, складывая цифры числа, при этом в полученной сумме нужно продолжить сложение цифр до получения однозначного остатка. При сложении цифр суммы и отдельные числа, кратные 9, а также нуль можно игнорировать, они не влияют на конечный результат.
- Умножаем или складываем остатки. В результате вычислений тем же способом находим остаток и сравниваем его с остатком суммы или произведения. При верном решении они должны совпадать.
- При делении и вычитании проверку этим способом можно производить, умножая остаток частного на остаток делителя, соответственно складывая остаток разности с остатком вычитаемого.

Примеры

1)
$$44 \cdot 46 = 2024$$
.

$$4+4=8$$
; $4+6=10 \rightarrow 1+0=1$; $2+0+2+4=8$;

$$8 \cdot 1 = 8$$
 (верно)

$$2)327 + 48 = 375.$$

$$3+2+7=12 \rightarrow 1+2=3$$
; $4+8=12 \rightarrow 1+2=3$;

$$3+7+5=15 \rightarrow 1+5=6; 3+3=6$$
 (верно)

3)
$$156: 12 = 13 \rightarrow 13 \cdot 12 = 156$$
.

$$1+3=4$$
; $1+2=3$; $1+5+6=12 \rightarrow 1+2=3$;

$$4 \cdot 3 = 12 \rightarrow 1 + 2 = 3$$
 (верно)

1.1. Рациональные выражения

4)
$$58 - 22 = 36 \rightarrow 36 + 22 = 58$$
.
 $3 + 6 = 9$; $2 + 2 = 4$; $5 + 8 = 13 \rightarrow 1 + 3 = 4$;
 $9 + 4 = 13 \rightarrow 1 + 3 = 4$ (верно)

ПРИЁМЫ БЫСТРОГО УСТНОГО СЧЁТА

Умножение чисел от 101 до 109 между сооои					
(100 + a)(100 + b) = 10000 + 100(a + b) + ab					
Порядок действий	Примеры				
1) Записываем число 1. 2) Справа записываем сумму чисел из разряда единиц у множителей. 3) Ещё правее записываем произведение этих же чисел.	1) $102 \cdot 104 = 10000 + 100(2+4) + 2 \cdot 4 = 10000 + 600 + 8 = 10608.$ 2) $109 \cdot 108 = 10000 + 100(9+8) + 9 \cdot 8 = 10000 + 1700 + 72 = 11772.$				
Умножение чисел, бо́льших 10					
(10+a)(10+b) = 10(10+a+b) + ab					
Порядок действий	Примеры				
1. К одному из множите-	1) 12 · 19 =				

Порядок действий	Примеры
1. К одному из множите-	1) 12 · 19 =
лей прибавляем едини-	$= 10(10 + 2 + 9) + 2 \cdot 9 =$
цы второго множителя,	=210+18=228;
получаем десятки.	2) $16 \cdot 13 =$
2. Перемножаем едини-	$=10(10+6+3)+6\cdot 3=$
цы.	= 190 + 18 = 208
3. Складываем десятки с	
произведением единиц.	
 Перемножаем единицы. Складываем десятки с 	,

Умножение двузначных чисел на 11

Чтобы умножить двузначное число на 11, надо сложить цифры этого числа и результат записать между ними, если это однозначное число. Если полученная сумма — двузначное число, то левую цифру прибавляем к числу десятков первоначального числа.

Примеры

1)
$$22 \cdot 11 = 2 \cdot 100 + (2 + 2) \cdot 10 + 2 = 242$$

2)
$$45 \cdot 11 = 4 \cdot 100 + (4+5) \cdot 10 + 5 = 495$$

3)
$$57 \cdot 11 = 5 \cdot 100 + (5 + 7) \cdot 10 + 7 = 627$$

Умножение чисел с одинаковыми десятками и числом единиц, дающих в сумме 10

$$(1+9=2+8=3+7=4+6=5+5=10)$$

- Десятки умножаем на следующее натуральное число: $2 \cdot 3$; $3 \cdot 4$; $5 \cdot 6$; $9 \cdot 10$; $11 \cdot 12$.
- $E\partial u h u u b u$ просто перемножаем (если в произведении получилось однозначное число, то слева приписываем 0): $1 \cdot 9 = 09$, $2 \cdot 8 = 16$, $3 \cdot 7 = 21$, $4 \cdot 6 = 24$, $5 \cdot 5 = 25$.
- В результате: слева произведение десятков, справа произведение единиц.

Примеры

1)
$$42 \cdot 48 = (4 \cdot 5) \cdot 100 + (2 \cdot 8) = 2000 + 16 = 2016$$

2)
$$51 \cdot 59 = (5 \cdot 6) \cdot 100 + (1 \cdot 9) = 3000 + 9 = 3009$$

3)
$$83 \cdot 87 = (8 \cdot 9) \cdot 100 + (3 \cdot 7) = 7200 + 21 = 7221$$

4)
$$115^2 = 115 \cdot 115 = (11 \cdot 12) \cdot 100 + (5 \cdot 5) =$$

= $13200 + 25 = 13225$

1.1. Рациональные выражения

	Признаки делимости				
на 2	Число оканчивается на чётную цифру $(0, 2, 4, 6, 8)$.				
на 3	Сумма цифр делится на 3.				
на 4	Две последние цифры числа — или нули, или число, делящееся на 4.				
на 5	Последняя цифра числа — 0 или 5 .				
на 6	Одновременное выполнение признаков делимости на 2 и на 3.				
на 7	Разность удвоенной последней цифры и числа из оставшихся цифр (из большего вычитаем меньшее) делится на 7				
на 8	Три последние цифры числа — нули или образуют число, делящееся на 8.				
на 9	Сумма цифр числа делится на 9.				
на 10	Последняя цифра числа — 0.				
на 11	Разность между суммой цифр, стоящих на нечётных местах, и суммой цифр, стоящих на чётных местах, делится на 11.				
на 13	Сумма, состоящая из последней цифры, умноженной на 4, и оставшихся цифр, делится на 13.				
на 25	Две последние цифры — нули или число, делящееся на 25.				

ОБЫКНОВЕННЫЕ ДРОБИ И ДЕЙСТВИЯ НАД НИМИ

Основное свойство дроби

$$\frac{m}{n} = \frac{m \cdot a}{n \cdot a}$$

$$\frac{m}{n} = \frac{m:b}{n:b}$$

Сложение, вычитание дробей с одинаковыми знаменателями

$$\frac{m}{n} + \frac{c}{n} = \frac{m+c}{n}$$

$$\frac{m}{n} - \frac{c}{n} = \frac{m - c}{n}$$

Приведение дробей к наименьшему общему знаменателю (нахождение наименьшего общего кратного знаменателей — НОК)

Пример:
$$\frac{3}{8}$$
, $\frac{7}{10}$, $\frac{11}{12}$.

$$8 = 2 \cdot 2 \cdot 2$$
, $10 = 2 \cdot 5$, $12 = 2 \cdot 2 \cdot 3$,

$$HOK(8, 10, 12) = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 3 = 120,$$

$$\frac{3}{8} = \frac{3 \cdot 15}{120} = \frac{45}{120}$$
; $\frac{7}{10} = \frac{7 \cdot 12}{120} = \frac{84}{120}$, $\frac{11}{12} = \frac{11 \cdot 10}{120} = \frac{110}{120}$.

Сложение смешанных чисел

Пример:
$$2\frac{3}{8} + 4\frac{7}{8} = 6 + \frac{3+7}{8} = 6\frac{10}{8} = 7\frac{2}{8} = 7\frac{1}{4}$$
.

Вычитание смешанных чисел

Пример:
$$5\frac{3}{11} - 2\frac{6}{11} = 4\frac{14}{11} - 2\frac{6}{11} = 2 + \frac{14-6}{11} = 2\frac{8}{11}$$
.

Умножение дробей

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

Взаимно обратные числа a и b, если $a \cdot b = 1$.

Пример:

$$1,2=\frac{6}{5}$$
 $\times \frac{5}{6}$; $\frac{6}{5} \cdot \frac{5}{6} = 1$.

Деление дробей

$$\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

Умножение смешанных чисел

Пример:

$$2\frac{1}{7} \cdot 3\frac{2}{5} = \frac{15}{7} \cdot \frac{17}{5} = \frac{15 \cdot 17}{7 \cdot 5} = \frac{3 \cdot 17}{7} = \frac{51}{7} = 7\frac{2}{7}.$$

ДЕСЯТИЧНЫЕ ДРОБИ И ДЕЙСТВИЯ НАД НИМИ

Бесконечная десятичная дробь — дробь, у которой в дробной части бесконечное множество цифр.

Периодическая бесконечная дробь — дробь, ряд цифр которой постоянно повторяется.

Пример: 2,838383... = 2,(83) — периодическая дробь;

57,072351748... — непериодическая дробь.

Сложение и вычитание десятичных дробей

- 1) Уравнять количество цифр после запятой во всех десятичных дробях, участвующих в вычислении, приписывая нули.
- 2) Сложить или вычесть получившиеся дроби по разрядам.

 Π *pumep*: 5,08 - 3,125 = 5,080 - 3,125 = 1,955.

Умножение десятичных дробей

- 1) Перемножить две десятичные дроби, как целые числа, не обращая внимания на запятые.
- 2) В полученном произведении отделить справа запятой столько цифр, сколько их было после запятых в обоих множителях вместе.
- 3) Деление десятичных дробей на целые числа производят так же, как деление целых чисел, а запятую в частном ставят после того, как закончено деление целой части.

Деление десятичных дробей на десятичную дробь

- 1) Перенести вправо запятую в делимом и делителе на столько цифр, сколько их имеется в дробной части делителя.
- 2) Разделить получившиеся числа, т. е. деление будет выполняться на целое число.

ПЕРЕВОД ОБЫКНОВЕННОЙ ДРОБИ В ДЕСЯТИЧНУЮ

Чтобы записать обыкновенную дробь в виде десятичной, нужно привести её к одному из знаменателей 10, 100, 1000 и т. д.

• Если знаменатель несократимой обыкновенной дроби не имеет никаких простых делителей, кроме 2 и 5, то эту обыкновенную дробь можно представить в виде десятичной.

1.1. Рациональные выражения

Пример:

$$\frac{5}{8} = \frac{5}{2^3} = \frac{5 \cdot 5^3}{2^3 \cdot 5^3} = \frac{625}{1000} = 0,625;$$

$$\frac{7}{40} = \frac{7}{2^3 \cdot 5} = \frac{7 \cdot 5^2}{2^3 \cdot 5 \cdot 5^2} = \frac{175}{1000} = 0,175;$$

$$\frac{21}{60} = \frac{7}{20} = \frac{7}{2^2 \cdot 5} = \frac{7 \cdot 5}{2^2 \cdot 5 \cdot 5} = \frac{35}{100} = 0.35.$$

• Если знаменатель обыкновенной дроби имеет хотя бы один простой делитель, отличный от 2 и 5, и эта дробь несократима, то её нельзя представить в виде десятичной.

Обыкновенная дробь	1/8	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{2}{5}$
Десятичная дробь	0,125	0,2	0,25	0,5	0,75	0,4

Обыкновенная дробь	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{3}{8}$	$\frac{5}{8}$	$\frac{7}{8}$
Десятичная дробь	0,6	0,8	0,375	0,625	0,875

ПРАВИЛО СЛОЖЕНИЯ, ВЫЧИТАНИЯ, УМНОЖЕНИЯ И ДЕЛЕНИЯ ПОЛОЖИТЕЛЬНЫХ И ОТРИЦАТЕЛЬНЫХ ЧИСЕЛ

x > 0 — положительное число x < 0 — отрицательное число -x и x — противоположные числа