Оглавление

предисл	ювие	3
	Введение	5
§ 1.	Комплексные числа	5
§ 2.	Последовательности и ряды комплексных чисел. Комплекснозначные функции действительного переменного.	
	Кривые и области на комплексной плоскости	16
§ 3.	Предел и непрерывность функции комплексного переменного. Интегрирование функции комплексного перемен-	
	ного	37
§ 4.	Равномерная сходимость. Степенные ряды	55
Глава 2.	Регулярные функции	61
§ 5.	Дифференцируемость функций. Гармонические функции	61
§ 6.	Теорема Коши. Интеграл типа Коши	68
§ 7.	Ряд Тейлора	80
§ 8.	Последовательности и ряды регулярных функций. Инте-	
	гралы, зависящие от параметра	88
§ 9.	Теорема единственности. Регулярное продолжение	94
§ 10.	Принцип максимума	101
	Ряд Лорана. Особые точки. Вычеты	107
§ 11.	Ряд Лорана	107
0	Изолированные особые точки однозначного характера	121
§ 13.	Вычисление вычетов	139
§ 14.	Вычисление интегралов по замкнутому контуру	150
§ 15.	Принцип аргумента. Теорема Руше	159
Глава 4.	Многозначные аналитические функции	165
§ 16.	Приращение аргумента функции вдоль кривой	165
§ 17.	Выделение регулярных ветвей	169

§ 18.	Вычисление значений регулярных ветвей многозначных	
	функций. Ряды Лорана для регулярных ветвей	172
§ 19.	Интегралы от регулярных ветвей	188
	Аналитическое продолжение. Полные аналитические	
	функции	203
§ 21.	Особые точки полных аналитических функций	211
Глава 5.	Приложения теории вычетов	223
§ 22.	Разложение мероморфных функций в ряды простейших	
	дробей и в бесконечные произведения	223
§ 23.	Вычисление несобственных интегралов	231
§ 24.	Интегралы, сводящиеся к гамма-функции	250
Глава 6.	Конформные отображения	261
§ 25.	Геометрический смысл производной	261
§ 26.	Определение и общие свойства конформных отобра-	
	жений	267
§ 27.	Дробно-линейные отображения	274
§ 28.	Конформные отображения элементарными функциями	288
§ 29.	Принцип симметрии	314
§ 30.	Отображение многоугольников	327
§ 31.	Применение конформных отображений при решении кра-	
	евых задач для гармонических функций	341
§ 32.	Преобразование Лапласа (операционное исчисление) и его	
	применение к решению дифференциальных уравнений	350
Литерат	ypa	360

Предисловие

Предлагаемый читателю «Сборник задач по теории функций комплексного переменного» предназначен для студентов инженернофизических и физико-технических специальностей вузов, а также студентов университетов. При создании сборника авторы опирались на опыт преподавания ТФКП в Московском физико-техническом институте (государственном университете).

Сборник состоит из шести глав. В первой главе рассматриваются комплексные числа, последовательности и ряды комплексных чисел, комплекснозначные функции действительного и комплексного переменного, предел, непрерывность и интегрируемость функций комплексного переменного.

Во второй главе изучаются регулярные функции и их свойства, последовательности и ряды регулярных функций.

Третья глава посвящена изучению рядов Лорана, изолированных особых точек однозначного характера, вычислению интегралов по замкнутому контуру с помощью вычетов.

В четвертой главе речь идет о многозначных аналитических функциях. Большое внимание уделяется выделению регулярных ветвей многозначных функций, вычислению значений регулярных ветвей и их разложению в ряды Тейлора и Лорана. Исследуются аналитические продолжения и полные аналитические функции, а также их особые точки.

В пятой главе теория вычетов применяется для вычисления несобственных интегралов, а также для разложения мероморфных функций в ряды простейших дробей и в бесконечные произведения.

В шестой главе рассматриваются конформные отображения, их применение для решения краевых задач, а также элементы операционного исчисления.

«Сборник» составлен с таким расчетом, чтобы им можно было пользоваться при любом построении лекционного курса. С этой целью пара-

графы сделаны более или менее независимыми друг от друга. Все необходимые ссылки на задачи других разделов приводятся с указаниями.

Каждый параграф начинается с изложения необходимых теоретических сведений по тематике параграфа. Далее проведен разбор решений типичных задач. После этого помещены задачи. Все указания к решениям даны в основном тексте, а ответы приведены в конце каждого параграфа.

Значительная часть задач составлена авторами специально для «Сборника». Авторы также частично использовали материалы «Сборника задач по теории аналитических функций» под редакцией М. А. Евграфова, а также задачи, предлагавшиеся студентам МФТИ в контрольных работах по ТФКП.

Авторы выражают глубокую благодарность коллективу кафедры высшей математики МФТИ, многолетняя плодотворная работа которого в значительной степени способствовала появлению этого сборника.

Введение

§ 1. Комплексные числа

Справочные сведения

1. Определение комплексного числа. Комплексные числа—выражения вида a+bi (a,b—действительные числа, i—некоторый символ). Равенство z=a+bi означает, что комплексное число a+bi обозначено буквой z, а запись комплексного числа z в виде a+bi называют алгебраической формой комплексного числа.

Два комплексных числа $z_1=a_1+b_1i$ и $z_2=a_2+b_2i$ называют равными и пишут $z_1=z_2$, если $a_1=a_2,\ b_1=b_2.$

Сложение и умножение комплексных чисел $z_1=a_1+b_1i$ и $z_2=a_2+b_2i$ производится согласно формулам

$$z_1 + z_2 = a_1 + a_2 + (b_1 + b_2)i, (1)$$

$$z_1 z_2 = a_1 a_2 - b_1 b_2 + (a_1 b_2 + a_2 b_1)i. (2)$$

Комплексное число вида $a+0\cdot i$ отождествляют с действительным числом a $(a+0\cdot i=a)$, число вида 0+bi $(b\neq 0)$ называют чисто мнимым и обозначают bi; i называют мнимой единицей. Действительное число a называют действительной частью комплексного числа z=a+bi и пишут $\operatorname{Re} z=a$, число b называют мнимой частью z и пишут $\operatorname{Im} z=b$.

Из формулы (2) следует, что

$$i^2 = -1, (3)$$

а формулы (1) и (2) получаются по правилам сложения и умножения двучленов $a_1 + b_1 i$ и $a_2 + b_2 i$ с учетом равенства (3).

Операции вычитания и деления определяются как обратные для сложения и умножения, а для разности z_1-z_2 и частного $\frac{z_1}{z_2}$ (при $z_2\neq 0$) комплексных чисел $z_1=a_1+b_1i$ и $z_2=a_2+b_2i$ имеют место формулы

$$z_1 - z_2 = a_1 - a_2 + (b_1 - b_2)i,$$

$$\frac{z_1}{z_2} = \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}i.$$

Сложение и умножение комплексных чисел обладают свойствами коммутативности, ассоциативности и дистрибутивности:

$$z_1 + z_2 = z_2 + z_1;$$
 $z_1 z_2 = z_2 z_1;$
 $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3),$ $(z_1 z_2) z_3 = z_1 (z_2 z_3);$
 $z_1 (z_2 + z_3) = z_1 z_2 + z_1 z_3.$

Множество комплексных чисел, в котором операции сложения и умножения определяются формулами (1) и (2), обозначается символом \mathbb{C} .

2. Модуль комплексного числа. Комплексно сопряженные числа. *Модулем комплексного числа* z=a+bi (обозначается |z|) называется число $\sqrt{a^2+b^2}$, т. е.

$$|z| = \sqrt{a^2 + b^2}.$$

Для любых комплексных чисел z_1, z_2 справедливы равенства

$$|z_1z_2|=|z_1|\cdot|z_2|;$$
 если $z_2
eq 0$, то $\left|\frac{z_1}{z_2}\right|=\frac{|z_1|}{|z_2|}.$

Число a-bi называется комплексно сопряженным с числом z=a+bi и обозначается \overline{z} , т. е.

$$\overline{z} = \overline{a + bi} = a - bi.$$

Справедливы равенства

$$z \cdot \overline{z} = |z|^2, \quad \overline{\overline{z}} = z.$$

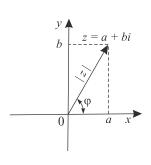
Для любых комплексных чисел z_1, z_2 верны равенства:

$$\overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2, \quad \overline{z_1 z_2} = \overline{z}_1 \cdot \overline{z}_2;$$
 если $z_2 \neq 0$, то $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z}1}$.

Частное от деления комплексных чисел можно записать в виде

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2}, \quad z_2 \neq 0.$$
 (4)

3. Геометрическое изображение комплексных чисел. Пусть на плоскости задана прямоугольная система координат. Комплексное число z=a+bi изображается точкой плоскости с координатами (a,b), и эта точка обозначается той же буквой z (рис. 1.1). Действительные числа изображаются точками оси абсцисс (ее называют dействительной



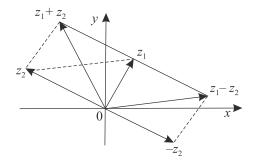


Рис. 1.1

Рис. 1.2

осью), а чисто мнимые числа — точками оси ординат (ее называют мнимой осью). Плоскость, на которой изображаются комплексные числа, называют комплексной плоскостью.

Комплексному числу z = a + bi можно сопоставить вектор с началом в точке O и концом в точке z (см. рис. 1.1). Этот вектор будем обозначать той же буквой z, его длина равна |z|.

Числу z_1+z_2 соответствует вектор, построенный по правилу сложения векторов z_1 и z_2 (рис. 1.2), а вектор z_1-z_2 можно построить как сумму векторов z_1 и $-z_2$.

Расстояние между точками z_1 и z_2 равно длине вектора z_1-z_2 , т. е.

$$|z_1 - z_2| = \sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2},$$

где $z_1 = a_1 + b_1 i$, $z_2 = a_2 + b_2 i$.

Условию $|z-z_0|=R$, где z_0 — заданное комплексное число, R>0, удовлетворяют точки, лежащие на окружности радиуса R с центром в точке z_0 .

Для любых комплексных чисел z_1, z_2 справедливы неравенства

$$|z_1 \pm z_2| \le |z_1| + |z_2|, \quad |z_1 \pm z_2| \ge ||z_1| - |z_2||.$$

4. Тригонометрическая и показательная формы комплексного числа. Аргументом комплексного числа $z \neq 0$ называется угол φ между положительным направлением действительной оси и вектором z (рис. 1.1). Этот угол считается положительным, если отсчет угла ведется против часовой стрелки, и отрицательным — при отсчете по часовой стрелке.

Связь между действительной и мнимой частями комплексного числа z=a+bi и его модулем r=|z| и аргументом φ выражается следующими

формулами:

$$\begin{cases} a = r\cos\varphi, \\ b = r\sin\varphi; \end{cases}$$
 (5)

$$\begin{cases}
a = r \cos \varphi, \\
b = r \sin \varphi;
\end{cases}$$

$$\begin{cases}
\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}, \\
\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}.
\end{cases}$$
(6)

Аргумент комплексного числа $z = a + bi \ (z \neq 0)$ можно найти, решив систему (6). Эта система имеет бесконечно много решений вида $\varphi = \varphi_0 + 2k\pi$, где $k \in \mathbb{Z}$, φ_0 — одно из решений системы (6), т. е. аргумент комплексного числа определяется неоднозначно. Чтобы подчеркнуть зависимость угла φ_0 от точки z, будем использовать обозначение $\varphi_0 = \arg z$. Множество всех значений аргумента числа z будем обозначать $\operatorname{Arg} z$, т. е. $\operatorname{Arg} z = \{ \operatorname{arg} z + 2\pi k \colon k \in \mathbb{Z} \}.$

Для нахождения аргумента комплексного числа $z = a + bi \ (a \neq 0)$ можно воспользоваться формулой

$$\operatorname{tg}\varphi = \frac{b}{a}.\tag{7}$$

При нахождении аргумента комплексного числа z с помощью формулы (7) нужно обратить внимание на то, в какой четверти находится точка z = a + bi.

Из равенств (5) следует, что любое комплексное число z = a + bi, где $z \neq 0$, представляется в виде

$$z = r(\cos\varphi + i\sin\varphi),\tag{8}$$

где $r=|z|=\sqrt{a^2+b^2},\; \varphi$ — аргумент числа z. Запись комплексного числа z в виде (8), где r > 0, называют тригонометрической формой комплексного числа.

Комплексное число $\cos \varphi + i \sin \varphi$ обозначается символом $e^{i\varphi}$, т. е. для любого φ функция $e^{i\varphi}$ определяется формулой Эйлера

$$e^{i\varphi} = \cos\varphi + i\sin\varphi. \tag{9}$$

Из равенства (9) следует, что $e^{2\pi i}=1,\ e^{\pi i}=-1,\ e^{\pi i/2}=i,\ e^{-\pi i/2}=-i$ и $|e^{i\varphi}|=1$ для любого $\varphi\in\mathbb{R}$.

Справедливы равенства

$$e^{i\varphi_1}e^{i\varphi_2} = e^{i(\varphi_1 + \varphi_2)}, \quad \frac{e^{i\varphi_1}}{e^{i\varphi_2}} = e^{i(\varphi_1 - \varphi_2)},$$
 (10)

$$e^{in\varphi} = (\cos\varphi + i\sin\varphi)^n = \cos n\varphi + i\sin\varphi, \quad n \in \mathbb{Z};$$
 (11)

формулу (11) называют формулой Муавра.

Из формул (8) и (9) следует, что любое комплексное число $z \neq 0$ можно записать в *показательной форме*

$$z=re^{i\varphi},$$
 где $r=|z|,$ φ — аргумент числа $z,$ (12)

а из равенств (10) вытекает, что если $z_1=r_1e^{i\varphi_1},\ z_2=r_2e^{i\varphi_2},$ где $r_1>0,$ $r_2>0,$ то

$$z_1 z_2 = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}, \tag{13}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}. (14)$$

Из формул (13) и (14) следует, что при перемножении комплексных чисел их модули перемножаются, а аргументы складываются; модуль частного двух комплексных чисел равен частному модулей этих чисел, а разность аргументов делимого и делителя является аргументом частного.

Если комплексные числа z_1 и z_2 записать в показательной форме, т.е. представить их в виде $z_1=r_1e^{i\varphi_1},\;z_2=r_2e^{i\varphi_2},\;$ то $z_1=z_2$ тогда и только тогда, когда

$$r_1 = r_2, \quad \varphi_1 = \varphi_2 + 2k\pi, \quad k \in \mathbb{Z}.$$

5. Извлечение корня. Рассмотрим уравнение

$$z^n = a, (15)$$

где $a \neq 0$ — комплексное число, $n \in \mathbb{N} \ (n>1)$. Пусть $z=re^{i\varphi}, \ a=\rho e^{i\theta},$ тогда

$$r^n e^{in\varphi} = \rho e^{i\theta},$$

откуда

$$r^{n} = \rho, \quad n\varphi = \theta + 2\pi k, \quad k \in \mathbb{Z},$$

 $r = \sqrt[n]{\rho}, \quad \varphi_{k} = \frac{1}{n} (\theta + 2k\pi).$ (16)

Таким образом, уравнение (15) имеет n различных корней

$$z_k = \sqrt[n]{|a|}e^{i\varphi_k},\tag{17}$$

где φ_k определяется формулой (16), $k=0,1,\ldots,n-1,\;\;\theta$ — аргумент числа a.

На комплексной плоскости точки z_k $(k=0,1,\ldots,n-1)$ располагаются в вершинах правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{|a|}$ с центром в точке O.

Примеры с решениями

Пример 1. Выполнить действия:

1)
$$(2-i)^3$$
; 2) $\frac{(1+i)(1-2i)}{3+i}$.

- \triangle 1) Используя формулу куба разности и равенства $i^2=-1,\ i^3=-i,$ получаем: $(2-i)^3=8-3\cdot 4i+3\cdot 2(-1)+i=2-11i.$
- 2) Пусть $z_1 = (1+i)(1-2i)$, $z_2 = 3+i$. Тогда по формуле (2) находим $z_1 = 3-i$, а по формуле (4) получаем:

$$\frac{z_1}{z_2} = \frac{3-i}{3+i} = \frac{(3-i)^2}{10} = \frac{8-6i}{10} = \frac{4}{5} - \frac{3}{5}i.$$

Пример 2. Доказать, что для любых двух комплексных чисел z_1 и z_2 справедливо равенство

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2).$$

△ Используя свойства комплексно сопряженных чисел, получаем:

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = (z_1 + z_2)(\overline{z_1 + z_2}) + (z_1 - z_2)(\overline{z_1 - z_2}) =$$

$$= (z_1 + z_2)(\overline{z_1} + \overline{z_2}) + (z_1 - z_2)(\overline{z_1} - \overline{z_2}) =$$

$$= 2z_1\overline{z_1} + 2z_2\overline{z_2} = 2(|z_1|^2 + |z_2|^2).$$

Это равенство выражает тот факт, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.

Пример 3. Найти множество точек комплексной плоскости, удовлетворяющих условию:

- 1) |z+1| = |z-i|; 2) 2 < |z+2i| < 3.
- \triangle 1) Уравнению |z+1|=|z-i| удовлетворяют все точки, равноудаленные от точек $z_1=-1$ и $z_2=i$. Это прямая y=-x (биссектриса второго и четвертого координатных углов).
- 2) Условию |z+2i|<3 удовлетворяют все точки, лежащие внутри круга радиуса 3 с центром в точке $z_0=-2i$, а условию |z+2i|>2- все точки, лежащие вне круга радиуса 2 с центром в точке z_0 . Искомое множество точек кольцо между окружностями радиусов 2 и 3 с общим центром в точке $z_0=-2i$.

Пример 4. Записать в тригонометрической и показательной форме комплексное число:

1)
$$z_1 = -1 - i$$
; 2) $z_2 = -\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}$.

 \triangle 1) Применяя формулу (7), получаем $\operatorname{tg} \varphi = 1$, откуда $\varphi = \frac{5\pi}{4}$, так как точка -1 - i лежит в третьей четверти. Так как $|z_1| = \sqrt{2}$, то $z_1 = \sqrt{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}\right) = \sqrt{2}e^{i5\pi/4}$.

2) Так как точка z_2 лежит во второй четверти, то, используя формулы приведения, получаем

$$-\cos\frac{\pi}{5} = \cos\frac{4\pi}{5}, \quad \sin\frac{\pi}{5} = \sin\frac{4\pi}{5},$$

и поэтому

$$z_2 = \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5} = e^{i4\pi/5}.$$

Пример 5. Вычислить $\frac{(1-i\sqrt{3})^6}{(1+i)^4}$.

 \triangle Так как $1-i\sqrt{3}=2e^{-i\pi/3},\ 1+i=\sqrt{2}e^{i\pi/4},$ то, применяя формулы (13) и (14), получаем:

$$\frac{(1-i\sqrt{3})^6}{(1+i)^4} = \frac{2^6 e^{-2\pi i}}{(\sqrt{2})^4 e^{i\pi}} = -16.$$

Пример 6. Найти все корни уравнения $z^6 = -8$.

 \triangle Используя формулы (16) и (17), где $\theta=\pi, \ |a|=\rho=8,$ получаем:

$$z_k = \sqrt{2}e^{i(\pi+2k\pi)/6}, \quad k = 0, 1, 2, 3, 4, 5,$$

где

$$\begin{split} z_0 &= \sqrt{2}e^{i\pi/6} = \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i, & z_1 &= \sqrt{2}e^{i\pi/2} = \sqrt{2}i, \\ z_2 &= \sqrt{2}e^{i5\pi/6} = -\frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i, & z_3 &= -z_0 = -\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}i, \\ z_4 &= -z_1 = -\sqrt{2}i, & z_5 &= -z_2 = \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}i. & & \blacksquare \end{split}$$

Задачи

1. Вычислить:

1)
$$(1+2i)(2-i) + (1-2i)(2+i);$$
 2) $\frac{5}{1+2i} + \frac{5}{2-i};$
3) $\left(\frac{1-i}{1+i}\right)^3;$ 4) $\frac{(1+2i)^2 - (1-i)^3}{(3+2i)^3 - (2+i)^2}.$

- 2. Записать в тригонометрической и показательной форме комплексное число z:
 - 1) $z = 1 + i^{121}$:
 - 3) $z = 1 + \cos\frac{\pi}{7} + i\sin\frac{\pi}{7}$; 4) $z = \frac{(1+i)^9}{(1-i)\sqrt{3}}$.
- 3. Найти все корни уравнения:
 - 1) $\overline{z} = z^3$; 2) |z| z = 1 + 2i;
 - 3) z + |z + 1| + i = 0; 4) $|z|^2 2iz + 2i = 0$.
- 4. Решить систему уравнений:

1)
$$\begin{cases} |z - 2i| = z, \\ |z - i| = |z - 1|; \end{cases}$$
 2)
$$\begin{cases} |z^2 - 2i| = 4, \\ |z + 1 + i| = |z - 1 - i|. \end{cases}$$

- 5. Решить уравнение:

 - 1) $z^2 = -i$; 2) $z^6 = 64$; 3) $z^7 = -1$; 4) $z^8 = 1 + i$.
- **6.** Пусть $z=z_0$ корень многочлена P(z) с действительными коэффициентами. Доказать, что $P(\overline{z}_0)=0$, т. е. \overline{z}_0 — корень многочлена P(z).
- 7. Пусть z_1 и z_2 фиксированные точки комплексной плоскости. Дать геометрическое описание множества всех точек z, удовлетворяющих уравнению:
 - 1) $|z-z_1|=|z-z_2|$;
 - 2) $|z 1| = |\operatorname{Re} z|$;
 - 3) $|z-z_1|+|z-z_2|=2a$, где $a>\frac{1}{2}|z_2-z_1|$;
 - 4) $||z-z_1|-|z-z_2||=2a$, где $a<\frac{1}{2}|z_2-z_1|$.
- 8. Пусть Δ_1 треугольник с вершинами $z_1, z_2, z_3,$ а Δ_2 треугольник с вершинами w_1, w_2, w_3 . Доказать, что треугольник Δ_1 подобен треугольнику Δ_2 , если

$$\frac{z_3-z_1}{z_2-z_1}=\frac{w_3-w_1}{w_2-w_1}.$$

- 9. Выяснить, какая линия на плоскости задается уравнением:
 - 1) $\operatorname{Re} \frac{1}{z} = \frac{1}{a} \ (a > 0); \ 2) \operatorname{Re} \frac{z 1}{z + 1} = 0;$
 - 3) $\operatorname{Im} \frac{z-1}{a+1} = 0;$ 4) $\operatorname{Re} \frac{z-a}{a+1} = 0 \ (a > 0).$
- 10. Выяснить, какое множество точек z комплексной плоскости удовлетворяет неравенству:
 - 1) |z-i|+|z+i|<4; 2) Re $\frac{1}{z}<\frac{1}{2}$;
 - 3) |z-2| |z+2| < 2; 4) |1+z| < |1-z|;
 - 5) $0 < \arg \frac{i-z}{z+i} < \frac{\pi}{2};$ 6) $\operatorname{Re}(z(1-i)) < \sqrt{2};$
 - 7) $\frac{\pi}{4} < \arg(z+i) < \frac{\pi}{2}$; 8) $|z| > 1 \operatorname{Re} z$; 9) $\operatorname{Re} z^4 > \operatorname{Im} z^4$.

11. Пусть A и C действительные, а B — комплексная постоянные и пусть $AC < |B|^2$. Доказать, что уравнение

$$A|z|^2 + \overline{B}z + B\overline{z} + C = 0 \quad (A > 0),$$

является уравнением окружности, а также найти центр этой окружности и ее радиус.

12. Доказать, что уравнение окружности, проходящей через три данные точки z_1, z_2, z_3 , не лежащие на одной прямой, можно записать в виде

$$\begin{vmatrix} |z|^2 & z & \overline{z} & 1 \\ |z_1|^2 & z_1 & \overline{z}_1 & 1 \\ |z_2|^2 & z_2 & \overline{z}_2 & 1 \\ |z_3|^2 & z_3 & \overline{z}_3 & 1 \end{vmatrix} = 0.$$

- 13. Доказать, что при любом положительном значении K, отличном от 1, уравнение $\left|\frac{z-z_1}{z-z_2}\right|=K$ является уравнением окружности, а также найти центр этой окружности и ее радиус.
- **14.** Доказать, что четыре попарно различные точки z_1, z_2, z_3, z_4 лежат на одной окружности (или на одной прямой) в том и только в том случае, когда величина $\frac{z_2-z_1}{z_3-z_1}$: $\frac{z_2-z_4}{z_3-z_4}$ действительна.
- 15. Пусть a произвольное комплексное число, удовлетворяющее условию ${\rm Im}\,a>0$. Доказать, что величина $\left|\frac{z-a}{z-\overline{a}}\right|$ в нижней полуплоскости больше единицы, в верхней полуплоскости меньше единицы, а на действительной оси равна единице.
- **16.** Пусть a- произвольное действительное число. Доказать, что если многочлен $P(z)=z^n+a_1z^{n-1}+\ldots+a_n$ имеет n действительных корней, то и многочлен Q(z)=P(z+ia)+P(z-ia) имеет n действительных корней.
- 17. Найти на отрезке, соединяющем точки z_1 и z_2 , точку, которая делит этот отрезок в отношении $\lambda_1: \lambda_2$, где λ_1 и λ_2 положительные числа.
- **18.** Доказать, что три попарно различные точки $z_1,\ z_2,\ z_3$ лежат на одной прямой в том и только в том случае, когда величина $\frac{z_3-z_1}{z_2-z_1}$ действительна.
- 19. Доказать, что точка ζ лежит на отрезке, соединяющем точки z_1 и z_2 , в том и только в том случае, когда существует такое число α , $0 \leqslant \alpha \leqslant 1$, что $\zeta = \alpha z_1 + (1 \alpha) z_2$.
- **20.** Пусть в точках z_1, \ldots, z_n комплексной плоскости помещены материальные точки с массами $\lambda_1, \ldots, \lambda_n$, соответственно. Доказать, что центр тяжести такой системы материальных точек находится в точке $\zeta = \frac{\lambda_1 z_1 + \ldots + \lambda_n z_n}{\lambda_1 + \ldots + \lambda_n}$.
- **21.** Пусть точки z_1 , z_2 , z_3 лежат на окружности с центром в точке z=0. Доказать, что треугольник с вершинами в точках z_1 , z_2 , z_3 является равносторонним в том и только в том случае, когда $z_1+z_2+z_3=0$.

- **22.** Доказать, что точки z_1 , z_2 , z_3 , z_4 , лежащие на одной окружности, являются вершинами прямоугольника в том и только в том случае, когда $z_1+z_3=z_2+z_4$ (точки занумерованы в порядке следования при обходе окружности).
- **23.** Даны три вершины z_1, z_2, z_3 параллелограмма, занумерованные в порядке следования по его границе. Найти четвертую вершину z_4 параллелограмма.
- **24.** Доказать, что при любых $z \in \mathbb{C}$ справедливо равенство

$$\left|\sqrt{z^2 - 1} + z\right| + \left|\sqrt{z^2 - 1} - z\right| = |z - 1| + |z + 1|.$$

- **25.** Доказать, что для любых $z_1 \in \mathbb{C}, \ z_2 \in \mathbb{C}$ справедливы равенства:
 - 1) $|z_1\overline{z}_2 + 1|^2 + |z_1 z_2|^2 = (|z_1|^2 + 1)(|z_2|^2 + 1);$
 - 2) $|z_1\overline{z_2} 1|^2 |z_1 z_2|^2 = (|z_1|^2 1)(|z_2|^2 1).$
- 26. Доказать, что величина

$$A|\lambda|^2 + B\lambda\overline{\mu} + \overline{B}\overline{\lambda}\mu + C|\mu|^2$$

неотрицательна при любых $\lambda \in \mathbb{C}, \ \mu \in \mathbb{C}$ в том и только в том случае, когда выполнены условия

$$A \geqslant 0$$
, $C \geqslant 0$, $|B|^2 \leqslant AC$.

27. Доказать, что при любых $z_k \in \mathbb{C}, \; \zeta_k \in \mathbb{C} \; (k=1,\,2,\,\ldots\,,\,n)$ имеет место неравенство

$$\left| \sum_{k=1}^{n} z_k \zeta_k \right|^2 \leqslant \sum_{k=1}^{n} |z_k|^2 \cdot \sum_{k=1}^{n} |\zeta_k|^2$$

(неравенство Коши-Буняковского-Шварца).

28. Доказать, что при любых $z_k \in \mathbb{C} \ (k=1,\,2,\,\ldots\,,\,n)$ имеет место неравенство

$$\left|\sum_{k=1}^n z_k\right| \leqslant \sqrt{n\sum_{k=1}^n |z_k|^2}.$$

29. Пусть 0 < s' < s. Доказать, что для любых $z_k \in \mathbb{C}$ (k = 1, 2, ..., n) справедливо неравенство

$$\left\{\frac{1}{n}\sum_{k=1}^{n}|z_{k}|^{s}\right\}^{1/s} \geqslant \left\{\frac{1}{n}\sum_{k=1}^{n}|z_{k}|^{s'}\right\}^{1/s'}.$$

30. Пусть s>0. Доказать, что для любых отличных от нуля $z_k\in\mathbb{C}$ $(k=1,\,2,\,\ldots\,,\,n)$ справедливо неравенство

$$\sqrt[n]{|z_1||z_2|\cdots|z_n|} \leqslant \left\{\frac{1}{n}\sum_{k=1}^n |z_k|^s\right\}^{1/s}.$$

15

1)
$$\left(\sum_{k=1}^{n} |z_k|\right)^p \leqslant n^{p-1} \sum_{k=1}^{n} |z_k|^p, \quad p \geqslant 1;$$

2)
$$\left(\sum_{k=1}^{n} |z_k|\right)^p \le \sum_{k=1}^{n} |z_k|^p, \quad 0$$

32. Пусть $p > 1, \ q > 1, \ \mathrm{a} \ \frac{1}{p} + \frac{1}{q} = 1.$ Доказать, что для любых $z_k \in \mathbb{C}, \ \zeta_k \in \mathbb{C}$ $(k=1, 2, \ldots, n)$ имеет место неравенство

$$\left| \sum_{k=1}^{n} z_k \zeta_k \right| \leqslant \left(\sum_{k=1}^{n} |z_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} |\zeta_k|^q \right)^{1/q}$$

(неравенство Гёльдера).

Ответы

1. 1) 8. 2)
$$3-i$$
. 3) i . 4) $\frac{22}{159} - \frac{5}{318}i$.

2. 1)
$$\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \sqrt{2} e^{i\pi/4}$$
.

2)
$$125(\cos 3\varphi + i\sin 3\varphi) = 125e^{i3\varphi}; \quad \varphi = \pi - \arctan \frac{4}{3};$$

3)
$$2\cos\frac{\pi}{14}\left(\cos\frac{\pi}{14} + i\sin\frac{\pi}{14}\right) = 2\cos\frac{\pi}{14}e^{i\pi/14};$$

4)
$$\frac{\sqrt{2}}{4} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \frac{\sqrt{2}}{4} e^{i\pi/4}$$
.

3. 1)
$$z_1 = 0$$
, $z_2 = 1$, $z_3 = -1$, $z_4 = i$, $z_5 = -i$;

2)
$$z = \frac{3}{2} - 2i$$
; 3) $z = -1 - i$; 4) $z = 1 - i$.

4. 1)
$$z = 1 + i$$
; 2) $z_1 = 1 - i$; $z_2 = -1 + i$.

5. 1)
$$z_1 = e^{-i\pi/4}$$
; $z_2 = e^{i3\pi/4}$;

2)
$$z_k = 2e^{i\pi k/6}$$
, $k = 0, 1, 2, 3, 4, 5$;

3)
$$z_k = e^{i(2k+1)\pi/7}, k = 0, 1, 2, 3, 4, 5, 6$$

1)
$$z_1 = e^{-i\pi/4}; \ z_2 = e^{i3\pi/4};$$

2) $z_k = 2e^{i\pi k/6}, \ k = 0, 1, 2, 3, 4, 5;$
3) $z_k = e^{i(2k+1)\pi/7}, \ k = 0, 1, 2, 3, 4, 5, 6;$
4) $z_k = \sqrt[16]{2}e^{i(8k+1)\pi/32}, \ k = 0, 1, 2, 3, 4, 5, 6, 7.$

- 7. 1) Прямая, проходящая через середину отрезка, соединяющего точки z_1 и z_2 , перпендикулярная к этому отрезку.
 - 2) Парабола, директрисой которой является мнимая ось, а фокусом точка z = 1.
 - 3) Эллипс с фокусами в точках z_1 и z_2 и с большой полуосью, равной a.
 - 4) Гипербола с фокусами в точках z_1 и z_2 и с действительной полуосью, равной a.
- 1) Окружность, построенная на отрезке [0, a] как на диаметре. 9.
 - 2) Окружность радиуса 1 с центром в точке z = 0.
 - 3) Действительная ось.
 - 4) Окружность радиуса a с центром в точке z=0.

- **10.** 1) Внутренность эллипса $\frac{x^2}{3} + \frac{y^2}{4} = 1$.
 - 2) Внешность круга $(x-1)^2 + y^2 \le 1$.
 - 3) Часть плоскости, лежащая справа от левой ветви гиперболы

$$x^2 - \frac{y^2}{3} = 1.$$

- 4) Полуплоскость, лежащая слева от мнимой оси.
- 5) Правая половина круга радиуса 1 с центром в точке z=0.
- 6) Полуплоскость, содержащая точку z=0 и ограниченная касательной к окружности радиуса 1 и центром в нуле, проведенной в точке $z=\frac{1+i}{\sqrt{2}}.$
- 7) Угол раствора $\frac{\pi}{4}$ с вершиной в точке z=-i, стороны которого проходят через точки $z=1,\ z=0.$
- 8) Часть плоскости, лежащая с той же стороны параболы $y^2 = 1 2x$, что и точка z = 1 (и ограниченная этой параболой).
- 9) Четыре угла раствора $\frac{\pi}{4}$ с вершиной в точке z=0, биссектрисами которых являются лучи $\arg z=-\frac{\pi}{16}+\pi k,\;\;k=0,1,2,3.$

Во всех случаях точки граничных линий не включаются.

- **11.** Центр окружности в точке $-\frac{B}{A}$, а радиус равен $\sqrt{\frac{|B|^2 AC}{A^2}}$.
- **13.** Центр окружности в точке $\frac{z_1 K^2 z_2}{1 K^2}$, а радиус равен $\frac{K|z_1 z_2|}{1 K^2}$.

§ 2. Последовательности и ряды комплексных чисел. Комплекснозначные функции действительного переменного.

Кривые и области на комплексной плоскости

Справочные сведения

1. Предел последовательности комплексных чисел

1.1. Комплексное число z_0 называется пределом последовательности $\{z_n\}$, если для любого $\varepsilon>0$ существует такой номер $N=N(\varepsilon)$, что для всех n>N выполняется неравенство

$$|z_n - z_0| < \varepsilon. \tag{1}$$

При этом пишут $\lim_{n\to\infty} z_n = z_0$.

Исчерпывающий задачник по теории функций комплексного переменного, написанный авторами на основе многолетнего опыта преподавания этого предмета в Московском физико-техническом институте.

Каждый параграф сборника содержит необходимый теоретический материал, примеры с решениями, а также задачи для самостоятельной работы.

Содержание настоящего сборника задач тесно связано с курсом ТФКП, изложенным в учебнике М. Шабунина и Ю. Сидорова «Теория функций комплексного переменного».

Для студентов инженерно-физических и физико-технических специальностей вузов, а также для студентов университетов.