Оглавление

Введение	7
Раздел 1. Теоретические основы химии	8
Глава 1. Основные понятия и законы химии.	
Предмет химии	9
Глава 2. Классификация неорганических веществ	13
Глава 3. Строение атома	24
Глава 4. Периодический закон и Периодическая	
система химических элементов	33
Глава 5. Типы химических связей.	
Электроотрицательность, степень окисления,	
полярность связей	
Глава 6. Кристаллические решетки	51
Тестовые задания в формате ЕГЭ по теме	
«Строение атома, строение молекул»	
Глава 7. Классификация химических реакций	59
Глава 8. Тепловой эффект химических реакций	68
Глава 9. Скорость химических реакций	70
Глава 10. Химическое равновесие	74
Глава 11. Окислительно-	
восстановительные реакции	78
Тестовые задания в формате ЕГЭ	
по теме «Классификация химических реакций,	
скорость, равновесие, теплота, окислительно-	0.0
восстановительные реакции»	
Глава 12. Электролитическая диссоциация	
Глава 13. Реакции ионного обмена	100
Глава 14 Гилролиз солей и бинарных соединений	104

	Глава 15. Электролиз растворов и расплавов	
	электролитов	111
	Тестовые задания в формате ЕГЭ	
	по теме «Процессы в растворах»	
	Глава 16. Классы неорганических веществ	121
	Тестовые задания в формате ЕГЭ по теме	
	«Классы неорганических веществ»	150
P	аздел 2. Неорганическая химия	158
	Глава 1. Водород	159
	Глава 2. Щелочные металлы	
	Глава 3. Элементы второй группы	
	главной подгруппы	173
	Глава 4. Алюминий	182
	Глава 5. Углерод	190
	Глава 6. Кремний	200
	Глава 7. Свинец	209
	Глава 8. Азот	213
	Глава 9. Фосфор	228
	Глава 10. Кислород	240
	Глава 11. Сера	
	Глава 12. Галогены	
	Тестовые задания в формате ЕГЭ по теме	
	«Неорганическая химия, s- и p-элементы»	275
	Глава 13. Хром	280
	Глава 14. Марганец	290
	Глава 15. Железо	300
	Глава 16. Медь	310
	Глава 17. Цинк	
	Тестовые задания в формате ЕГЭ по теме	
	«Неорганическая химия, <i>d</i> -элементы»	322

Раздел 3. Органическая химия	.326
Глава 1. Теория строения органических соединений	.327
Глава 2. Алканы	.350
Глава 3. Алкены	.362
Глава 4. Алкадиены	.375
Глава 5. Циклоалканы	.384
Глава 6. Алкины	.394
Глава 7. Ароматические углеводороды	.405
Тестовые задания в формате ЕГЭ по теме «Углеводороды»	.424
Глава 8. Спирты и фенолы	.430
Глава 9. Карбонильные соединения	.451
Глава 10. Карбоновые кислоты и их производные	.465
Глава 11. Жиры	.488
Глава 12. Углеводы	.493
Тестовые задания в формате ЕГЭ по теме «Кислородсодержащие органические вещества»	.508
Глава 13. Азотсодержащие вещества	.513
Глава 14. Аминокислоты и белки	.527
Тестовые задания в формате ЕГЭ по теме	
«Азотсодержащие органические вещества»	.536
Раздел 4. Методы познания в химии.	
Химия и жизнь	.540
Глава 1. Полимеры и химические волокна. Полимеризация и поликонденсация	.541
Глава 2. Качественные реакции	
Глава 3. Лабораторное оборудование	
Глава 4. Методы разделения смесей	

6 Оглавление

Глава 5. Ядовитые вещества.	
Техника безопасности при работе с кислотами,	
щелочами, взрывчатыми и токсичными	
веществами	564
Глава 6. Промышленное получение	
и переработка некоторых веществ	568
Глава 7. Применение важнейших веществ	578
Тестовые задания в формате ЕГЭ по теме	
«Метолы познания в уимии Химия и жизнь»	588

Введение

Данное пособие предназначено для абитуриентов, которые готовятся к единому государственному экзамену по химии, а также для коллег-преподавателей, которые помогают им готовиться к этому экзамену.

Мы обобщили и систематизировали теоретический материал, который требуется для подготовки, в том виде и объеме, который успешно используем в своей работе.

Структура пособия соответствует спецификации ЕГЭ по химии.

Однако материал структурирован таким образом, что отдельные блоки можно менять местами в процессе изучения, без ущерба для результата.

Например, блок «Неорганическая химия» содержит множество уравнений реакций, которые необходимо запомнить, поэтому мы считаем целесообразным изучать этот блок в конце курса, после блока «Органическая химия».

Соответственно, читатель может в своей работе ориентироваться на привычный для него вариант расположения материала.

В конце каждой главы даются упражнения для закрепления материала, которые помогают проверить и выявить проблемные места и убедиться, что тема проработана качественно.

В пособии также есть тестовые задания, которые составлены по образцу заданий ЕГЭ по химии. Они знакомят с форматом сдаваемого экзамена на основе изученной темы, однако в этой книге мы не ставили целью составить полноценные тематические тесты. Для этого существуют отдельные издания.

Надеемся, что наше пособие поможет вам в подготовке к экзамену.

РАЗДЕЛ 1

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИИ

Глава 1.

Основные понятия и законы химии. Предмет химии

Химия — это наука о веществах, их строении, свойствах и взаимных превращениях.

Предметом химии являются химические элементы, их соединения, закономерности превращений веществ.

1. Определения

Химический элемент — вид атомов с одинаковым зарядом их атомных ядер.

Атом — это мельчайшая частица химического элемента, сохраняющая все его химические свойства.

Молекула — наименьшая частица вещества, обладающая его химическими свойствами и состоящая из одинаковых или различных атомов.

Простое вещество — вещество, состоящее из одинаковых атомов.

Сложное вещество состоит из атомов разных химических элементов.

Ион — заряженная частица.

Катион — положительно заряженная частица.

Анион — частица с отрицательным зарядом.

Химическая формула — условное обозначение состава веществ с помощью химических знаков и индексов.

Химическая реакция — превращение одного или нескольких исходных веществ (реагентов) в другие вещества.

Химическое уравнение — это условная запись химической реакции с помощью символов атомов, индексов и коэффициентов.

Пример.

 O_2 — химическая формула простого вещества кислорода; молекула, состоящая из двух атомов кислорода.

 ${\it CO}_2$ — сложное вещество углекислый газ (химическое название — оксид углерода (IV)). Это молекула, состоящая из одного атома углерода и двух атомов кислорода.

Пример.

Химическое уравнение $2KOH + H_2SO_4 = K_2SO_4 + 2H_2O$ — отражает протекание реакции между гидроксидом калия и серной кислотой, в результате которой образуется сульфат калия и вода.

2. Основные законы химии

Закон сохранения массы: общая масса веществ, вступивших в химическую реакцию, равна общей массе всех продуктов реакции.

(М. В. Ломоносов, 1748 г.)

Закон постоянства состава: независимо от способа получения все индивидуальные вещества имеют постоянный количественный и качественный состав.

(Ж. Пруст, 1808 г.)

Закон кратных отношений: если два химических элемента образуют несколько соединений, то весовые доли одного и того же элемента в этих соединениях, приходящиеся на одну и ту же весовую долю второго элемента, относятся между собой как небольшие целые числа.

(Дж. Дальтон, 1803 г.)

Пример.

В соединение может вступать только целое число атомов, а не дробное. Например, массовые соотношения С:О в оксидах CO_2 и СО равны 12:32 и 12:16. Следовательно, массовое отношение кислорода в оксидах, связанное с постоянной массой углерода в CO_2 и СО, равно 2:1.

Закон объемных отношений: объемы газов, вступающих в химические реакции, и объемы газов, являющихся продуктами реакции, соотносятся между собой как небольшие целые числа.

(Ж. Гей-Люссак, 1808 г.)

Пример.

В реакции $H_2+Cl_2=2HCl$ один объем водорода реагирует с одним объемом хлора, при этом образуются два объема хлороводорода.

Относительная атомная масса A_r — это значение массы атома, выраженное в атомных единицах массы (а.е.м.). Относительная атомная масса показывает, во сколько раз атом данного элемента тяжелее к 1/12 массы атома углерода 12 С.

Пример.

Относительная атомная масса атомарного азота $A_{r}(N)$ равна 14,0067 а.е.м.

Атомная единица массы — внесистемная единица массы, которая определяется как 1/12 массы свободного покоящегося атома углерода 12 С, находящегося в основном состоянии.

1 а.е.м.
$$\approx 1,66 \cdot 10^{-24}$$
 г.

Относительная молекулярная масса $\rm M_r$ — это величина, равная отношению массы молекулы к 1/12 массы атома углерода $\rm ^{12}C$. Это либо безразмерная величина, либо величина, выраженная в атомных единицах массы. Отно-

сительные молекулярные массы сложных молекул можно определить, просто складывая относительные атомные массы входящих в них элементов. Как правило, в задачах ЕГЭ по химии атомные массы элементов округляют до целых значений. Исключение: атомную массу хлора принимают равной 35,5 а.е.м.

Пример.

Относительная молекулярная масса углекислого газа $M_{\bullet}(CO_{\circ})$ вычисляется так:

$$M_r(CO_2) = A_r(C) + 2A_r(O) \approx 12 + 2.16 = 44 \text{ a.e.m.}$$

Количество вещества ν , (моль) — это физическая величина, характеризующая количество однотипных структурных единиц, содержащихся в веществе. Один моль содержит примерно $6.02\cdot10^{23}$ частиц.

Моль — это единица измерения количества вещества. Один моль содержит примерно $6.02\cdot10^{23}$ частиц.

Число Авогадро N_A (постоянная Авогадро, или константа Авогадро), (моль $^{-1}$) — это физическая величина, численно равная количеству структурных единиц (атомов, молекул, ионов, электронов или любых других частиц) в 1 моле вещества.

$$N_{\Lambda} = 6.02 \cdot 10^{23} \,\text{моль}^{-1}$$

Молярная масса М, (г/моль) — это масса одного моля вещества. Определяется как отношение массы вещества к количеству вещества, выраженному в молях. Молярные массы сложных частиц можно определить, суммируя молярные массы входящих в них элементов.

Пример.

Молярная масса воды $M(H_2O)$ вычисляется как сумма молярных масс всех элементов:

$$M(H_{2}O) = 2M(H) + M(O) \approx 2.1 + 16 = 18$$
 г/моль.

Глава 2. Классификация неорганических веществ

Все вещества делятся на простые и сложные.

1. Простые вещества

Простые вещества — это вещества, образованные только атомами одного химического элемента.

Они, в свою очередь, делятся на металлы и неметаллы.

Металлы — простые вещества, в которых атомы связаны между собой **металлической** связью.

Неметаллы — простые вещества, в которых атомы связаны между собой ковалентными (или межмолекулярными) связями.

Самое главное отличие металлов от неметаллов:

- металлы стремятся отдавать электроны; чем легче атом отдает электроны, тем более выражены у него металлические свойства;
- неметаллы стремятся принимать и притягивать электроны. Чем прочнее атом удерживает электроны, чем сильнее их притягивает тем более выражены неметаллические свойства.

Разделение элементов на металлы и неметаллы обусловлено различиями в строении атомов, которые подробно рассмотрены в главе 4. Неметаллы находятся в IIIA-VIIIA группах Периодической системы.

Таблица **Расположение неметаллов в Периодической системе**

Период	IA	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	Н						Не
2		В	C	N	0	F	Ne
3			Si	P	S	Cl	Ar
4				As	Se	Br	Kr
5					Те	I	Xe

Семь неметаллов состоят из двухатомных молекул: $\mathbf{H_2}$, $\mathbf{N_2}$, $\mathbf{O_2}$, $\mathbf{F_2}$, $\mathbf{Cl_2}$, $\mathbf{Br_2}$, $\mathbf{I_2}$.

2. Сложные вещества

Сложные вещества — это вещества, в состав которых входят атомы **нескольких** химических элементов.

По структуре сложные вещества делятся на:

- оксиды (кислотные, основные и амфотерные);
- гидроксиды (часть кислот, основания, амфотерные гидроксиды);
- соли;
- иные бинарные соединения (не соли).

1) Оксиды.

Оксиды — бинарные соединения, одним из двух элементов в которых является **кислород** со степенью окисления -2.

Таблица **Типы оксидов**

Основные	Оксиды металлов в степенях окисления +1 , +2 , кроме амфотерных	
Амфотерные	Оксиды металлов в степенях окисления +2: BeO, ZnO, SnO, PbO; +3 (все, кроме La ₂ O ₃), +4	
Кислотные	1) Оксиды неметаллов, кроме несолеобразующих; 2) оксиды металлов в степенях окисления от +5 и выше	
Несолеобразу- ющие	370 37 0 00	
Солеобразные (двойные)	Некоторые оксиды , в которых элемент имеет 2 степени окисления: $Pb_3O_4(PbO_2\cdot 2PbO)$, $Fe_3O_4(Fe_2O_3\cdot FeO)$	

2) Гидроксиды.

Каждому солеобразующему оксиду соответствует гидроксид.

Основным оксидам соответствуют основания.

Амфотерным оксидам — амфотерные гидроксиды.

Кислотным оксидам — кислородсодержащие кислоты.

Гидроксиды — соединения, в состав которых входит группа Э-O-H.

И основания, и кислородсодержащие кислоты, и амфотерные гидроксиды — относятся к гидроксидам!

Типы гидроксидов

Таблица

Основные гидроксиды	Амфотерные гидроксиды	Кислотные гидроксиды
Основания		Кислородсодержа- щие кислоты
NaOH, Ca(OH) ₂	$\mathbf{Zn}(\mathbf{OH})_2, \mathbf{Cr}(\mathbf{OH})_3$	HNO ₃ , H ₃ PO ₄

Связь между оксидом и гидроксидом

- Основному оксиду соответствует основание.
- Амфотерному оксиду соответствует амфотерный гидроксид.
- Кислотному оксиду соответствует кислотный гидроксид (кислородсодержащая кислота).

Степень окисления металла в оксиде и гидроксиде должна быть одинакова.

Пример: 1) оксид CrO (основный оксид), ему соответствует основание Cr(OH),

2) оксид Cr_2O_3 (амфотерный оксид), ему соответствует амфотерный гидроксид $Cr(OH)_3$