
ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
1. Теоретические основы расчета гидравлических систем	5
2. Назначение, состав и принцип действия гидравлических систем	23
3. Методические указания к расчету гидравлических систем	24
3.1. Методика расчета гидравлической системы	24
3.2. Простой трубопровод	25
3.3. Трубопровод с насосной подачей	26
3.4. Истечение жидкости через отверстия и насадки	29
4. Этапы расчета гидравлической системы	34
4.1. Общие положения	34
4.2. Система заправки самолетов топливом	45
4.3. Пусковая топливная система газотурбинного двигателя (ГТД)	60
4.4. Система аэродромного пожаротушения	71
5. Требования к оформлению работы	89
ПРИЛОЖЕНИЯ	
Образец титульного листа	97
СПИСОК ЛИТЕРАТУРЫ	

1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАСЧЕТА ГИДРАВЛИЧЕСКИХ СИСТЕМ

Несмотря на упрощенный подход к решению задач в гидравлике, методика их решения основана на тех же основных законах и уравнениях, которые используются в механике жидкости и газа. Это законы сохранения массы, количества движения и энергии, которые в механике жидкости и газа записываются в
виде уравнений неразрывности, движения и энергии. Так как гидравлика рассматривает одномерное движение несжимаемой жидкости, то уравнения движения и энергии становятся зависимыми, и для решения большинства задач
обычно достаточно использовать только два основных уравнения: уравнение
неразрывности и уравнение энергии. Все уравнения и зависимости записываются для контрольного объема, представляющего неподвижный в пространстве
объем, через который протекает жидкость. Поскольку гидравлическая система
представляет в общем случае канал с твердыми стенками, направляющими
движение жидкости, в качестве контрольного объема выступает либо вся система в целом, либо ее участок, ограниченный входным I-I и выходным 2-2сечениями (рис. 1.1).

Уравнение неразрывности в гидравлике называют уравнением расхода. Для участка системы, ограниченного сечениями l-1 и 2-2 – контрольного объема (рис. 1.1), оно может быть записано в виде:

$$\rho_1 u_1 S_1 = \rho_2 u_2 S_2 \tag{1.1}$$

или

$$G = \rho u S = \text{const}, \tag{1.1a}$$

где ρ — плотность жидкости (кг/м³), представляющая массу жидкости, заключенную в единице объема; u — среднерасходная скорость жидкости в сечении (м/с); S — площадь поперечного сечения канала (м²); G — массовый расход жидкости (масса жидкости, протекающая через поперечное сечение канала в единицу времени) (кг/с).

4. ЭТАПЫ РАСЧЕТА ГИДРАВЛИЧЕСКОЙ СИСТЕМЫ

4.1. Общие положения

Целью расчета гидравлической системы является построение кривой потребного давления (напора) или характеристики заданной гидросистемы, а также распределения давления (пьезометрического напора).

Для расчета предлагаются следующие виды гидравлических систем: системы заправки самолетов топливом, пожаротушения, пусковая топливная система воздушно-реактивного двигателя. Перед проведением расчета необходимо ознакомиться с назначением заданной гидросистемы, принципом (условиями) ее работы и структурной схемой, обеспечивающей функционирование гидросистемы.

Затем необходимо определить теплофизические характеристики рабочей жидкости и давления на входе и выходе из системы, заданные параметры элементов гидросистемы.

Для реализации методики расчета гидросистемы, описанной в п. 3.1, рассматриваемую гидравлическую систему делят на два участка: всасывающий и напорный. Для этих участков гидросистемы формулируются свои граничные условия, определяющие характер работы рассматриваемого участка.

Поскольку необходимо построить кривую потребного напора H = f(Q) заданный объемный расход Q полагать максимальным, а за минимальное значение расхода принять $Q_{\min} = Q/4$. Таким образом, кривую потребного давления необходимо строить по четырем точкам.

Затем вычисляют скорость течения жидкости в трубопроводах участков по значению заданного расхода и заданному диаметру трубопровода. В пределах рассматриваемого участка диаметр трубопроводов считают одинаковым.

Так как выражение для потребного давления имеет вид

$$p_{\text{norp}} = p_{\text{cr}} + \left[\frac{C}{\rho} + \left(\frac{\sum \zeta_j + \frac{l}{d} \cdot \lambda}{2\rho S^2} \right) \right] \cdot G^2,$$

то его значение зависит от значения расхода и сопротивления рассматриваемо-

го участка гидросистемы
$$R = \frac{\sum \zeta_j + \frac{l}{d} \cdot \lambda}{2\rho S^2}$$
. Сопротивление трубопроводов вы-

числяются в предположении независимости коэффициентов местных потерь от числа Рейнольдса для четырех-пяти значений расхода рабочей жидкости.

Далее вычисляются потери в гидравлических элементах участков. Порядок определения потерь при этом значения не имеет.

Затем рассчитывается распределение статического давления вдоль участков с учетом изменения скорости течения жидкости и высоты расположения элементов системы. При этом полагается, что местные сопротивления имеют бесконечно малую протяженность в направлении течения. Расчет начинают

В том случае, когда изменения напора (давления) в некоторых сечениях очень малы, для их иллюстрации необходимо сделать выноски в другом масштабе.

Для контроля правильности расчета и удобства графического представления табл. 1 или 2 можно представить в безразмерном виде, разделив все величины значения $p_H/\rho g$. Тогда все безразмерные величины будут указывать, насколько они больше атмосферного давления.

4.3. Пусковая топливная система газотурбинного двигателя (ГТД)

4.3.1. Описание системы

Для возможности использования любого двигателя по прямому назначению необходимо вывести его на минимальный режим устойчивой работы. Процесс вывода двигателя на этот режим, называемый режимом малого газа, и представляет собой запуск.

Запуск двигателя на земле включает раскрутку ротора двигателя внешним раскручивающим устройством — агрегатом предварительной раскрутки (стартером), подачу топлива в камеру сгорания двигателя, его воспламенение и вывод двигателя на режим малого газа. Таким образом, для осуществления запуска двигателя необходимы агрегат предварительной раскрутки, источник энергии для питания агрегата предварительной раскрутки, пусковые топливные магистрали, агрегаты зажигания и управления. Комплекс этих агрегатов и устройств называется системой запуска.

В процессе раскрутки, в строго заданной последовательности включается подача *пускового* топлива к пусковым форсункам. Подача топлива обеспечивается топливными насосами и электроклапанами до момента полного воспламенения *основного* топлива и начала интенсивной раскрутки турбины. После воспламенения основного топлива подача пускового топлива автоматически отключается. Пусковая топливная система работает кратковременно, до выхода двигателя на режим малого газа. Продолжительность работы в течение одного запуска не более 30–60 с.

В качестве пускового топлива используется основное топливо двигателя – керосин. Существуют типы двигателей, на которых пусковым топливом является бензин с лучшей испаряемостью. Это требует отдельной топливной системы со своим топливным баком, что усложняет и утяжеляет конструкцию.

В состав пусковой топливной системы ГТД, помимо всего прочего, входит пусковой воспламенитель, который служит для розжига топлива в камере сгорания при запуске двигателя.

Воспламенитель представляет собой, по сути дела, миниатюрную камеру сгорания (рис. 4.10), в которой смонтирована чаще всего простая одноступенчатая центробежная или струйная форсунка и свеча зажигания для непосредственного розжига. Для осуществления надежного высотного запуска обычно имеется подпитка кислородом.