ОГЛАВЛЕНИЕ

Авторский коллектив
Список сокращений и условных обозначений
Введение
Глава 1. Биотехнология как одно из основных направлений 11 контрольные вопросы 20
Глава 2. Биообъекты, применяемые в биотехнологическом производстве 21 Контрольные вопросы
Глава 3. Совершенствование биообъектов 33 Контрольные вопросы 54
Глава 4. Молекулярные механизмы внутриклеточной регуляции
Глава 5. Биотехнологический процесс 66 Контрольные вопросы 119
Глава 6. Инженерная энзимология 122 Контрольные вопросы 138
Глава 7. Биотехнология ферментов 140 Контрольные вопросы 153
Глава 8. Технология рекомбинантных белков 154 Контрольные вопросы 185
Глава 9. Иммунобиотехнология 186 Контрольные вопросы 209
Глава 10. Биотехнология аминокислот 210 Контрольные вопросы 232
Глава 11. Биотехнологическое производство витаминов 233 и коферментов 259
Глава 12. Биотехнология гормональных препаратов 260 Контрольные вопросы 267
Глава 13. Биотехнология антибиотиков 268 Контрольные вопросы 284

4 Оглавление

Глава 14. Технология производства бактериофагов 285 Контрольные вопросы 290
Глава 15. Производство препаратов нормофлоры 291 Контрольные вопросы 301
Глава 16. Фитобиотехнология 302 Контрольные вопросы 317
Глава 17. Применение хроматографических методов в биотехнологии 319 Контрольные вопросы
Глава 18. Единая система GLP, GCP и GMP при создании лекарственных препаратов. Роль биоскрининга в разработке новых лекарственных средств 327 Контрольные вопросы 349
Глава 19. Биотехнология и пищевая промышленность
Глава 20. Биотехнология и экология
Список литературы
Приложение. Словарь терминов и определений
Предметный указатель

Глава 9

ИММУНОБИОТЕХНОЛОГИЯ

Иммунобиотехнология представляет собой важный раздел современной биотехнологии, включающий научную разработку и технологическое производство профилактических, диагностических и лекарственных средств, в которых в качестве активных компонентов применяют различные агенты и/или процессы иммунной системы.

Иммунная система человека эволюционно сформирована для осуществления функции контроля над генетическим постоянством внутренней среды по принципу распознавания свой—чужой с целью сохранения видовой и биологической индивидуальности. Иммунная система — это специализированная, анатомически обособленная лимфоидная ткань, которая распределена в виде различных образований и отдельных клеток по всему организму и составляет 1–2% массы тела. Состоит из центральных органов: костного мозга, тимуса (вилочковой железы), эмбриональной печени, лимфоидных образований толстой кишки и червеобразного отростка — и периферических органов: селезенки, лимфатических узлов, скоплений лимфоидной ткани (групповых фолликулов, миндалин). В центральных органах происходит лимфопоэз, то есть созревание иммунокомпетентных клеток; в периферических — непосредственно реализация иммунных функций.

К основным функциональным клеткам иммунной системы относятся лимфоциты, число которых достигает 10^{12} . Кроме Т- и В-лимфоцитов, к числу функциональных клеток в составе лимфоидной ткани относят гранулярные и мононуклеарные лейкоциты, дендритные и тучные клетки, белые отростчатые эпидермоциты кожи (клетки Лангерганса) и др. Часть клеток сосредоточена в отдельных органах иммунной системы, другие — свободно перемещаются по всему организму.

Функционирование иммунной системы может развиваться по направлению неспецифических (врожденный, естественный) и специфических (адаптивный или приобретенный) реакций, в ряде случаев представляющих собой стадии единого процесса, направленного на

защиту организма. При этом неспецифический иммунитет выступает как защита и первой линии, и заключительной стадии. Система приобретенного иммунитета берет на себя промежуточные функции специфического распознавания и запоминания чужеродных агентов, а также функцию подключения факторов врожденного иммунитета на заключительном этапе процесса (рис. 9.1, см. цв. клейку).

Врожденный иммунитет реализуется в виде двух важных процессов: воспаления и фагоцитоза, заключающегося в «пожирании» и разрушении инородных тел лейкоцитами и макрофагами. В этом случае распознавание и удаление инородных агентов происходят без учета их специфики. К факторам неспецифического иммунитета относят также лизоцим и бактериолизин. Эта система реагирует только на корпускулярные агенты (инородные микрочастицы, микроорганизмы) и на цитотоксичные вещества.

Более совершенным и мощным механизмом защиты организма от воздействия биологических агрессивных факторов является специфический иммунитет. Эволюционно специфический иммунитет возник позже и означает распознавание самых тонких, еле уловимых различий между чужеродными агентами. Современное представление о структуре и функциях иммунной системы в целом связано в первую очередь со специфическим иммунитетом.

Важнейшим достижением иммунологических исследований явилось открытие двух независимых эффекторных механизмов в специфическом иммунном ответе. Один из механизмов связан с В-лимфоцитами, отвечающими за гуморальный ответ, заключающийся в синтезе иммуноглобулинов, другой — с системой Т-лимфоцитов, следствием деятельности которых является клеточный ответ, заключающийся в накоплении сенсибилизированных антигенами лимфоцитов.

Следует заметить, что разделение иммунитета на клеточный и гуморальный весьма условное. Основу клеточного иммунитета составляют лимфоциты, которые с целью созревания переселяются из костного мозга в тимус, в результате чего эта часть лимфоцитов получила название тимусзависимые или Т-лимфоциты. В организме человека Т-лимфоциты после созревания попадают сначала в лимфу, затем в кровь, где проявляют свои свойства, затем снова возвращаются в органы. За весь жизненный цикл лимфоцит может «проходить» более 100 км. Такая интенсивная циркуляция позволяет лимфоцитам быстро появляться в «горячих точках», когда в лимфоцитах возникает потребность.

В тимусе происходит формирование разных видов Т-клеток. Одни из них («хелперы», «дирижеры иммунного ответа») принимают участие в регуляции развития В-клеток и образования антител, то есть в реализации гуморального иммунного ответа; другие — взаимодействуют с фагоцитами, помогая им разрушать поглощенные микробные клетки. Важной функцией «хелперов» является также участие в процессе распознавания чужеродных веществ В-лимфоцитами и другими разновидностями Т-лимфоцитов. Некоторые Т-лимфоциты за способность разрушать клетки, содержащие чужеродный антиген, получили название цитотоксические или «киллеры».

Существуют еще Т-супрессоры, функция которых заключается в подавлении активности иммунного ответа, когда в нем нет необходимости. Если иммунные клетки будут работать продолжительное время, то поражаться начнут уже собственные здоровые клетки организма, и это, в свою очередь, будет способствовать развитию различных аутоиммунных болезней.

Иммунитет человека представляет собой комплекс реакций, задача которого — защитить организм от чужеродных для человека агентов, к которым относят нуклеиновые кислоты, белки, клетки микроорганизмов, вирусы, антибиотики, пестициды и другие, объединенные под общим названием антигены. Следует отметить, что образование антител направлено не против всей молекулы антигена, а только на определенные небольшие участки на их поверхности, получившие название антигенных детерминант (эпитопов). Например, в случае молекулы белка антигенными детерминантами являются участки, в состав которых входят всего около пяти аминокислотных остатков. В случае бактериальных клеток в качестве антигенных детерминант часто выступают короткие цепочки из трех-пяти остатков сахаров, которые образуют стенку бактерий.

Следует отметить неспособность некоторых низкомолекулярных соединений вызывать образование антител, их называют гаптенами (к ним, например, относится ряд лекарственных средств). При присоединении гаптенов к поверхности какой-либо макромолекулы организм начинает процесс выработки антител. Гаптены даже малых размеров способствуют активному образованию высокоспецифичных антител.

Резюмируем вышесказанное: клеточный иммунитет и гуморальный иммунитет тесно связаны между собой и сбой в одном звене неизбежно влечет нарушения в работе другого.

Различают несколько видов нарушений иммунитета. Первичный, или врожденный, иммунодефицит — это результат дефектов в генетической системе организма, проявляющийся еще в раннем детстве в виде частых инфекционных заболеваний. Лечение первичного иммунодефицита осуществляется с помощью комплекса специальных иммунотропных препаратов и иммунозаместительной терапии.

Вторичный иммунодефицит — это приобретенные нарушения иммунитета, которые возникают чаще всего в результате применения некоторых лекарственных средств, в частности гормональных препаратов или антибиотиков. Кроме того, к нарушениям иммунитета можно отнести также травмы и стрессы. Следствиями таких нарушений при вторичном иммунодефиците могут стать различные хронические заболевания. Особо выделяют ВИЧ — вирусное заболевание, которое приводит к изменению генетического аппарата клеток иммунной системы и, как следствие, их последующей гибели.

Причинами возникновения аутоиммунных патологий могут стать частые инфекционные заболевания или генетические «сбои» в организме, результатом которых является интенсивная выработка антител, «атакующих» собственные клетки организма.

В настоящее время иммунопатологические состояния встречаются достаточно часто, что дало начало развитию таких направлений, как иммунофармакология и иммунобиотехнология, изучающих различные аспекты иммунокорригирующей терапии.

Иммунотропные препараты подразделяют на группы в зависимости от действия, оказываемого на иммунную систему (рис. 9.2):

- ▶ иммунодепрессанты препараты, угнетающие иммунитет;
- ▶ иммуностимуляторы препараты, стимулирующие иммунную систему;
- иммуномодуляторы препараты разнонаправленного действия в зависимости от исходного состояния иммунной системы.

По происхождению иммунотропные препараты делят на три основные группы.

1. *Препараты экзогенного (микробного) происхождения* — это живые бактерии (вакцина БЦЖ и др.); лизаты (Бронхо-мунал⁴, Имудон⁴, ИРС-19⁴, Бронхо-ваксом⁴, Уро-ваксом⁴ и др.); липополисахариды (продигиозан, пирогенал, шигеллвак); дрожжевые полисахариды (нуклеинат натрия); рибосомы + протеогликан (Рибомунил⁴); пробиотики (Биоспорин⁴, Бластен⁴, Линекс⁴). Показаниями к применению этих иммуностимуляторов являются хронические инфекции бактериальной,

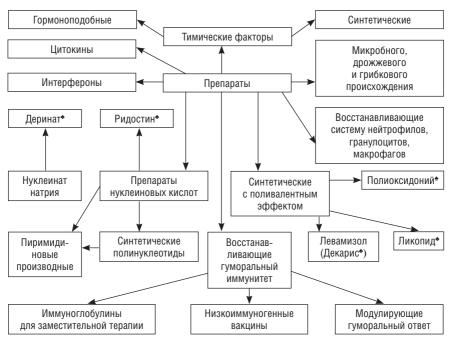


Рис. 9.2. Классификация основных иммунотропных препаратов, используемых для восстановления нормального функционирования дефектной иммунной системы (Нестеров И.В., Сепиашвили Р.И., 2000)

вирусной или грибковой природы и другие заболевания. В последние десятилетия делается акцент на использование иммуномодуляторов именно микробного происхождения, которые одновременно обладают свойствами и иммуностимулятора, и вакцины.

2. Препараты эндогенного (биологического) происхождения. К этой группе относятся иммунорегуляторные пептиды, образующиеся в центральных органах иммунной системы (костном мозге, тимусе), и получаемые на их основе экстракты. Среди представителей данной группы выделяют препараты тимусного происхождения: Т-активин, тимактид, тималин, тимоптин, вилозен, тимостимулин и другие, применяемые при заболеваниях, центральным звеном патогенеза которых является поражение Т-системы иммунитета, или аллергических заболеваниях верхних дыхательных путей (Вилозен⁴). Препарат костномозгового происхождения — Миелопид⁴ — применяют при заболеваниях с поражением В-звена иммунитета. К препаратам эндогенного проис-

хождения также относятся цитокины (интерлейкины, интерфероны, монокины) и колониестимулирующие факторы.

3. Синтетические и химически чистые препараты. К этой группе относятся синтетические аналоги препаратов экзогенного или эндогенного происхождения, такие как, например, Тимоген^{*} и Ликопид^{*}, применяющиеся при заболеваниях с поражением клеточного звена иммунитета, а также при острых и хронических гнойно-воспалительных процессах. Кроме вышеупомянутых, к данной группе относят и широко известные лекарственные препараты — диуцифон и левамизол, обладающие иммуностимулирующими свойствами и применяющиеся при лечении первичных и вторичных иммунодефицитов, некоторых онкологических заболеваний, а также заболеваний с поражением Т-звена иммунитета. Следует выделить ряд новых активных иммунокорректоров (собственно синтетические препараты), которые были получены в результате направленного синтеза: Полудан , который применяют при вирусных заболеваниях глаз; Кемантан — при терапии вторичных иммунодефицитов и синдрома хронической усталости; Леакалин $^{\wp}$ — для терапии тромбоцитопений и лейкопений.

К группе иммунотропных препаратов относятся также средства, оказывающие влияние на иммунную систему наряду с другими фарма-кологическими эффектами. Это адаптогены, антиоксиданты, фитопрепараты (Протефлазид $^{\bullet}$, Иммунал $^{\bullet}$, Манакс $^{\wp}$, Панавир $^{\bullet}$, Мангогерпин $^{\wp}$), регуляторные пептиды (Даларгин $^{\bullet}$, Тафцин $^{\wp}$), энтеросорбенты (Белосорб $^{\wp}$, Микотон $^{\wp}$, Энсорал $^{\wp}$, Антрален $^{\wp}$, Силлард $^{\wp}$); комплексные ферментные препараты (Вобэнзим $^{\bullet}$, Вобэ-Мугос $^{\bullet}$, Флогэнзим $^{\bullet}$).

В качестве иммуномодуляторов применяют также антилимфоцитарную сыворотку и иммуноглобулины (Интраглобин⁴, Пентаглобин⁴ и др.).

Иммуномодуляция (от лат. *immunitas* — избавление, освобождение, *modulatio* — мерность, размеренность) — термин интегративный, объединяющий представления о каком-либо целенаправленном вмешательстве в работу иммунной системы, функционирующей в условиях патологии. К составным частям иммуномодуляции относятся *иммуностимуляция* и *иммунодепрессия*, то есть иммунокоррекция в зависимости от исходного состояния иммунной системы.

В зависимости от типа воздействия способы усиления иммунного ответа подразделяют на активные и пассивные, последние в свою очередь — на специфические и неспецифические (табл. 9.1).

Avenue postovanue	Пассивное воздействие		
Активное воздействие	специфическое	неспецифическое	
Вакцины на основе реком- бинантных протективных антигенов, живые гибридные носители	Поликлональные антитела — на основе инфекционных агентов, микробных токсинов (сыворотки)	Рекомбинантные интерлейкины, интерфероны и другие цитокины. Тимические факторы	

Таблица 9.1. Способы усиления иммунного ответа с помощью иммунобиопрепаратов

Для активной иммунопрофилактики и иммунотерапии применяют *вакцины*. Вакцина является сложным иммунобиотехнологическим препаратом, в состав которого входят:

- действующий компонент, представленный специфическими антигенами (извлеченные из микроорганизма антигенные структуры, продукты жизнедеятельности микроорганизмов токсины как вторичные метаболиты, вирусные частицы или убитые микробные клетки, живые ослабленные микроорганизмы);
- консервант, который определяет при хранении стабильность вакцины и не допускает размножения случайно попавшей в препарат микрофлоры;
- стабилизатор, функция которого заключается в предохранении антигена от разрушения, тем самым продлевая срок годности вакцины (сахарозо-агар-желатин и др.);
- адъювант, ответственный за повышение иммуногенности антигена (минеральный сорбент, полимерный носитель, эмульгаторы, липиды и др.).

Следует отметить, что основное свойство вакцин заключается в создании активного поствакцинального иммунитета, который по характеру и конечному эффекту соответствует постинфекционному иммунитету. Метод, в основе которого лежит использование антигена или комплекса антигенов в сочетании или без адъювантов с целью модуляции иммунного ответа, называется вакцинотерапией.

В зависимости от природы, способа и характера получения вакцины классифицируют (по А.А. Воробьеву) на живые (аттенуированные, дивергентные, векторные рекомбинантные); неживые — корпускулярные (цельновирионные, цельноклеточные, субвирионные, субклеточные) и молекулярные (биосинтетические природные и генночиженерные, химически синтезированные); комбинированные или ассоциированные (из живых и неживых вакцин). В роли антигена при по-

лучении вакцин применяют живые ослабленные микроорганизмы; неживые, убитые микробные клетки или вирусные частицы; антигенные структуры, извлеченные из микроорганизма; продукты жизнедеятельности микроорганизмов (токсины).

По составу вакцины подразделяют на:

- моновакцины, содержащие антиген одного серовара;
- поливакцины, содержащие антигены нескольких сероваров;
- комплексные, комбинированные или ассоциированные вакцины, которые содержат антигены нескольких видов микроорганизмов, или одного и того же вида, но в различных вариантах (например, корпускулярный и молекулярный антигены).

Кроме этого, существует классификация по виду лекарственной формы: инъекционные (жидкие), ингаляционные (аэрозоли), пероральные (таблетки, капсулы, драже).

Основой для получения живых вакцин являются:

- естественные штаммы микроорганизмов с ослабленной вирулентностью для человека, но содержащие полный набор антигенов;
- искусственно полученные ослабленные штаммы;
- генно-инженерные формы с использованием штамма, несущего ген чужеродного антигена (например, вирус оспы со встроенным антигеном гепатита В).

Аттенуированные вакцины представляют собой препараты, полученные из ослабленных микроорганизмов, потерявших вирулентность, но сохранивших иммуногенность. К ним относятся: сибиреязвенная вакцина, чумная живая, туляремийная вакцина, вакцина против кулихорадки, сыпнотифозная вакцина, полиомиелитная вакцина, коревая вакцина, паротитная вакцина, вакцина желтой лихорадки, вакцина против ветряной оспы.

Дивергентные вакцины — препараты из живых микроорганизмов, неболезнетворных для человека, но сходных по антигенным свойствам с болезнетворными микроорганизмами. Например, для прививки против оспы человека применяли вирус оспы коров. В данной группе представлены: вакцина БЦЖ, вакцина бруцеллезная, вакцины против гриппа, вакцина против натуральной оспы человека.

Векторные рекомбинантные вакцины получают методом генной инженерии. Для этого в геном вакцинного штамма встраивают ген (вектор), контролирующий образование антигенов другого возбудителя (чужеродного антигена). Например, в штамм вируса оспенной вакцины встраивают антиген вируса гепатита В (НВs-антиген). Такая

векторная вакцина создает иммунитет и против оспы, и против гепатита В.

Основные стадии получения *бактериальных живых вакцин*: стадия выращивания в ферментаторе, стадия стабилизации, стадия стандартизации, стадия лиофильного высушивания и контроль качества. *Вирусные вакцины* получают путем культивирования штамма с использованием куриного эмбриона или культур животных клеток.

Среди живых вакцин рассматриваются:

- ▶ бактериальные вакцины туберкулезная (БЦЖ), чумная, туляремийная, сибиреязвенная, бруцеллезная, против ку-лихорадки и др.;
- ▶ вирусные вакцины полиомиелитная, коревая, гриппозная, паротитная, против желтой лихорадки и др.

Преимущества живых вакцин:

- ▶ создание напряженного и длительного иммунитета до 7 лет;
- простой способ применения (через рот, интраназально, накожно, подкожно);
- ▶ меньшая реактогенность, так как не содержат консервантов и адъювантов.

Недостатки живых вакцин:

- трудоемкость получения вакцинных штаммов;
- ▶ малый срок хранения всего до 2 лет;
- ▶ особые требования к хранению и транспортировке (+4-8 °C).

Для обеспечения безопасности живых вакцин необходимо проводить постоянный контроль реверсии вирулентности возбудителя, строго соблюдать требования, обеспечивающие сохранность и активность вакцинных микробов.

Неживые (инактивированные) вакцины подразделяют на корпускулярные, молекулярные и химические.

Корпускулярные вакцины получают из инактивированных культур патогенных (высоковирулентных) или вакцинных штаммов бактерий и вирусов. Для инактивации используют физические (температура, УФ-лучи, ионизирующее излучение) и химические (формалин, спирт, ацетон, β -пропиолактон) методы. Корпускулярные вакцины из целых бактерий называют цельноклеточными, а из целых (неразрушенных) вирусов — цельновирионными.

Стадии получения корпускулярных вакцин:

1) выращивание в асептических условиях чистой культуры микробов;

- 2) инактивация с целью лишения микроорганизмов жизнеспособности при сохранении их иммуногенности (например, инактивация путем прогревания взвеси микробов при 56 °C);
- 3) стандартизация (по концентрации микробов);
- 4) консервирование (добавлением 2-феноксиэтанола, мертиолата, формальдегида и др.) и фасовка;
- 5) контроль качества на стерильность, безопасность и иммуногенность.

Преимущества цельноклеточных и цельновирионных вакцин:

- простота получения;
- стабильность и более длительный срок хранения.

Недостатки цельноклеточных и цельновирионных вакцин:

- менее напряженный и продолжительный иммунитет;
- ▶ необходимость повторных введений парентеральным путем (подкожно, внутримышечно), реже — через рот;
- ▶ реактогенность боль, чувство жжения на месте введения, повышение температуры и т.д.

Примеры корпускулярных цельных вакцин: против гриппа, коклюша, холеры, гепатита А, герпеса, вирусного энцефалита и др. Они применяются для профилактики соответствующих заболеваний. Ряд вакцин используют для лечения хронических инфекционных заболеваний — бруцеллеза, хронической дизентерии, хронической гонореи, хронических стафилококковых инфекций.

В случае если корпускулярные вакцины готовят из разрушенных бактерий и вирусов с целью получения антигенных комплексов, их называют субклеточными и субвирионными.

Получение субклеточных и субвирионных вакцин более сложное, чем цельных: нередко применяют такой метод, как ферментативное переваривание с последующим осаждением антигенов этиловым спиртом.

Преимущества субклеточных и субвирионных вакцин:

- содержат только антигены без других компонентов;
- ▶ более безопасны и реже вызывают побочные реакции;
- более стабильны и лучше подвергаются стандартизации;
- ▶ можно вводить в виде ассоциированных препаратов.

Недостатки:

- слабая иммуногенность, интенсивность которой можно повысить введением адъювантов;
- ▶ малые размеры, что приводит к быстрой элиминации и кратковременному антигенному воздействию.

Адъюванты, применяемые для усиления иммуногенности вакцин, укрупняют антигенные частицы, создают в месте введения «депо», из которого антигены медленно высвобождаются, что удлиняет время их воздействия на иммунную систему. К адъювантам относят минеральные коллоиды (фосфат алюминия, фосфат кальция, гидрат оксида алюминия, алюмокалиевые квасцы), полимерные вещества (липополисахариды, синтетические полимеры), растительные вещества (сапонины) и др. Вакцины с адъювантами называются адъювантными, сорбированными, адсорбированными или депонированными вакцинами.

Примеры субклеточных и субвирионных вакцин: против брюшного тифа на основе О-, Н- и Vi-антигенов, против гриппа на основе антигенов вируса (нейраминидаза и гемагглютинин), против сибирской язвы на основе капсульного антигена, против дизентерии, менингита и холеры.

Молекулярные вакцины получают на основе специфического антигена, находящегося в молекулярном виде. Данные вакцины могут быть получены с помощью химического синтеза, биосинтеза и генной инженерии. К данной группе относятся анатоксины — бактериальные экзотоксины, потерявшие токсичность в результате длительного воздействия формалина, но при этом сохранившие антигенные свойства. К таким относят противодифтерийный анатоксин, противостолбнячный анатоксин, противоботулинический анатоксин, противогангренозный анатоксин и др. Получение анатоксинов:

- 1) выращивание возбудителей, которые образуют экзотоксины (возбудители столбняка, ботулизма, дифтерии, газовой гангрены), глубинным способом в жидкой питательной среде;
- 2) отделение микробных клеток от культуральной жидкости путем фильтрации;
- 3) добавление к культуральной жидкости с экзотоксином формалина и выдерживание при 37 °C в течение 3–4 нед;
- 4) очищение анатоксина, концентрирование и стандартизация;
- 5) консервирование и фасовка.

Важным направлением в создании молекулярных вакцин является метод химического синтеза, при помощи которого получают некоторые низкомолекулярные антигены, а также высокомолекулярные носители. Например, гриппозная вакцина состоит из антигенов вируса гриппа и Полиоксидония , который обладает выраженными адъювантными свойствами.

Молекулярные вакцины получают также методом генной инженерии. Так получена вакцина против гепатита B, антигены которого синтезируются клетками дрожжей.

Примерами молекулярных вакцин являются: вакцина коклюшнодифтерийно-столбнячная адсорбированная (АКДС-вакцина), анатоксин дифтерийно-столбнячный очищенный адсорбированный (АДСанатоксин), анатоксин дифтерийно-столбнячный с уменьшенным содержанием антигенов (АДС-М), анатоксин дифтерийный с уменьшенным содержанием антигена (АД-М-дифтерийный анатоксин), анатоксин столбнячный (АС-анатоксин), трианатоксин ботулинический (А, В и Е), тетраанатоксин ботулинический (А, В и Е) в сочетании со столбнячным, анатоксин стафилококковый, холерная вакцина.

Ассоциированные вакцины представляют собой комплекс из вакцин разного типа, направленных на выработку иммунитета сразу к нескольким заболеваниям. Различают поливакцины, содержащие однородные антигены (например, полиомиелитная — типы І, ІІ и ІІІ; полианатоксины) и комбинированные (комплексные), представленные разнородными антигенами (например, АКДС-вакцина). Примеры ассоциированных вакцин: АКДС (ассоциированная коклюшно-дифтерийно-столбнячная вакцина) из дифтерийного и столбнячного анатоксина и коклюшной корпускулярной вакцины; гриппозная вакцина из трех штаммов вируса гриппа; живая ассоциированная полиомиелитная вакцина, состоящая из штаммов вируса полиомиелита І, ІІ и ІІІ типов; менингококковая вакцина, в состав которой входят антигены четырех серотипов менингококка; живая комплексная вакцина против кори, паротита и краснухи и др.

Эффективным средством экстренной профилактики и лечения многих заболеваний, прежде всего инфекционных, являются иммуноглобулины, сыворотки и моноклональные антитела. В качестве средств пассивной иммуностимуляции рассматриваются сыворотки — это иммунобиологические препараты из крови человека и животных на основе антител, относящихся к гамма-глобулинам (иммуноглобулинам) классов IgG, IgM, IgE, IgA, IgD, против возбудителей инфекционных заболеваний, а также продуктов их жизнедеятельности. Различают антитоксические, противовирусные и антибактериальные сыворотки.

Сывороточные препараты и специфические иммуноглобулины оказывают как непосредственное влияние на возбудителя инфекции, так и обладают выраженным неспецифическим иммуномодулирующим свойством.

Сыворотки можно получить различными способами:

- путем иммунизации животных (гетерологичные) и человека (гомологичные), из крови которых выделяют плазму крови, из которой в дальнейшем удаляют фибрин и получают сыворотку;
- из культивируемых животных клеток с обязательным обеспечением их стабильного роста.

Гетерологичные препараты в отличие от гомологичных быстро элиминируют из циркуляции, создавая иммунитет продолжительностью не более 2 нед, и характеризуются сильными аллергенными свойствами, что ограничивает их применение.

В качестве материала для культивирования используют почки собак, кроликов, обезьян, клетки легких эмбриона человека, куриный эмбрион. Поскольку животные клетки не наделены способностью выдерживать лиофилизацию, их консервируют в жидком азоте при температуре 196 °C.

Среди большого разнообразия сывороток выделяют гамма-глобулины — группу иммунных сывороток, характеризующихся высокой степенью очистки гамма-глобулиновой фракции белка. Иммунный гамма-глобулин (IgG) является продуктом матричного синтеза. Его получают из донорской крови человека в очищенном и концентрированном виде. Продолжительное время выпускались препараты иммуноглобулинов, приготовленные из плацентарной крови, однако они содержали большое количество гонадотропинов, трансплантационных антигенов и других нежелательных примесей, поэтому в настоящее время выпуск таких препаратов запрещен.

Среди основных способов выделения иммуноглобулинов рассматривают метод Кона, метод фракционированного осаждения белков с использованием этанола. Препарат изготавливают на основе комплекса сывороток крови взрослых людей, ранее болевших инфекционными заболеваниями (например, гриппом, корью) или получавших вакцины в качестве профилактических средств. Именно поэтому так называемый нормальный глобулин может содержать иммуноглобулины против возбудителей кори, дифтерии, оспы и других заболеваний.

Условно все существующие сыворотки можно разделить на две основные группы: диагностические и лечебно-профилактические.

Диагностические иммунные сыворотки используют при постановке различных иммунологических реакций с целью установления вида, подвида или серотипа (серовара) возбудителя инфекционной болезни, а также определения различных антигенов в биологических материа-

лах. В зависимости от характера иммунологических реакций различают преципитирующие, агглютинирующие, гемолитические, флюоресцирующие, меченные ферментами, радиоактивными нуклидами и ряд других диагностических сывороток. Широко применяются диагностические сыворотки в клинической практике с целью определения группы крови, проведения тканевого типирования при переливаниях крови и аллогенных трансплантациях, для характеристики иммунологического статуса организма, например, определения классов иммуноглобулинов.

Среди лечебно-профилактических сывороток выделяют антитоксические, антивирусные, антибактериальные сыворотки, а также иммуноглобулины. Антитоксические сыворотки нашли свое применение в профилактике и терапии токсинемических инфекций, в патогенезе которых ключевым моментом является действие на организм экзотоксинов бактерий: возбудителей ботулизма, столбняка, дифтерии, стафилококковых инфекций, газовой гангрены. Способ получения данного типа сывороток основан на иммунизации животных, чаще всего лошадей, путем парентерального введения им анатоксинов в нарастающих дозах (гипериммунизированные животные), реже от доноров, иммунизированных анатоксином. К антитоксическим сывороткам относят и сыворотки, содержащие антитела против ядов пауков, змей, ядов растительного происхождения. Антитела антитоксических сывороток направлены на нейтрализацию действия соответствующих токсинов.

Антибактериальные сыворотки получают с использованием крови волов или лошадей, гипериммунизированных соответствующими убитыми бактериями или их антигенами. Следует заметить, что эти сыворотки не нашли широкого применения в клинической практике из-за наличия других более эффективных антимикробных средств.

Для получения антивирусных сывороток используют кровь животных, подвергшихся иммунизации соответствующими вирусами или вакцинными штаммами вирусов. Очищение антивирусных сывороток осуществляют методом спиртового осаждения в условиях низкой температуры. К противовирусным иммуноглобулинам относят антирабический гамма-глобулин, гамма-глобулин против клещевого энцефалита и др.

Наряду с гетерогенными выделяют гомологичные иммуноглобулины, полученные из крови человека, исключение составляет нормальный иммуноглобулин человека, который имеет направленное действие. Преимуществом этих иммуноглобулинов является слабая реактогенность,

а также более длительное, в течение 30—40 дней, циркулирование антител в организме. В отличие от обычных иммуноглобулиновых препаратов, предназначенных для внутримышечного введения, в клинической практике наибольшее значение имеют иммуноглобулины, обладающие максимально сниженной антикомплементарной активностью и возможностью использоваться внутривенно. К иммуноглобулинам, полученным из крови человека, относят иммуноглобулины: противогриппозный, антирабический, нормальный, противостолбнячный, противостафилококковый, противоэнцефалитный (титрованный на антитела к вирусу клещевого энцефалита).

Антитоксины — это препараты лечебно-профилактического действия, которые изготавливаются на основе сывороток крови, получаемой от иммунизированных соответствующими анатоксинами лошадей. Обезвреживание токсина осуществляется путем использования детоксикаторов (окислителей, протеаз и др.). К антитоксическим сывороткам относятся противоботулиновые типов А и В, противогангренозные (моно- и поливалентные), противодифтерийная и противостолбнячная.

Кроме иммуноглобулинов, важными биологическими функциями наделены и другие белковые фракции сыворотки крови, поэтому они могут быть выделены в очищенном виде для последующего использования в клинической практике.

Препараты тимуса. Как указано выше, тимус относят к центральным органам иммунной системы, где проходят специальную обработку будущие тимоциты, приобретающие соответствующие функции (Т-хелперы, Т-супрессоры, Т-киллеры). Наряду с тем, что тимус является продушентом Т-клеток лимфоидного ряда, ответственных за реализацию клеточного иммунитета, а также регуляцию серологического иммунитета, этот орган является и эндокринной железой. В нем образуются гормоны: тимозины и тимопоэтины, относящиеся к регуляторам иммунных процессов. Важную роль для нормального функционирования иммунной системы играет именно уровень секреции пептидных факторов эпителиальными клетками тимуса: окситоцина, вазопрессина, соматостатина, гормона роста, АКТГ, инсулина и инсулиноподобных ростовых факторов, а также тимопентина, тимулина, тимозинов и др. Содержащиеся и вырабатывающиеся в тимусе гормоны и гормоноподобные субстанции составляют основу многих иммуностимулирующих веществ, применяемых в клинической практике.

Препараты тимуса и их синтетические аналоги стимулируют процессы созревания, дифференцировки и активность Т-лимфоцитов,

восстанавливают сниженные показатели клеточного иммунитета, способствуют продукции цитокинов и усиливают процессы фагоцитоза. К препаратам тимуса (первое поколение) относятся Тимозин[©], Тималин[©], Тимостимулин[©], Тимоптин⁴, Тактивин⁴, Тимомодулин[©], которые получают путем экстракции и последующей очистки из вилочковой железы (*Glandula thymus*) крупного рогатого скота. К синтетическим аналогам относятся Тимогексин[©] (Иммунофан[©]), Вилон[©], Тимоген⁴ (второе поколение) и Бестим⁴ (третье поколение).

Родоначальником тимических препаратов является Тактивин⁴. в состав которого входит тимический гормон — α_1 -тимозин. Тимозин представляет собой пептид, состоящий из 28 аминокислот, полученный путем экстрагирования из тимуса быка. Иммуномодуляторы на основе пептидных экстрактов тимуса широко используются в России, а также разрешены к медицинскому применению в ряде стран Европы. Клиническая эффективность природных тимических препаратов сомнений не вызывает, однако они достаточно трудно подвергаются стандартизации в связи с тем, что представляют собой неразделенную смесь биологически активных пептидов. Прогресс в области разработки новых тимических препаратов шел по пути создания синтетических аналогов гормонов тимуса: тимопоэтина, α_1 -тимозина или фрагментов этих гормонов. Направление получения синтетических аналогов оказалось наиболее продуктивным, особенно в отношении тимопоэтина. На основе данного гормона созданы препарат Тимопентин⁴ фрагмент активного центра тимопоэтина, а также синтетический гексапептид — аналог участка 32—36 тимопоэтина — Иммунофан[©].

В процессе изучения состава лекарственного препарата тималина был обнаружен дипептид, состоящий из триптофана и глутамина, обладающий выраженной иммунотропной активностью, за счет чего он послужил основой для создания Тимогена и Бестима. Отличительной чертой Бестима от Тимогена является наличие у первого γ-пептидной связи и присутствие D-, а не L-глутамина, что проявляется увеличением фармакологической активности Бестима.

Препараты данной группы используют при гипоплазии и аплазии тимуса, при хронических инфекционных и гнойно-воспалительных заболеваниях, при вторичных иммунодефицитах, травмах, ожогах, для повышения эффективности противоопухолевой терапии у онкологических больных, в профилактических целях при осложнениях у хирургических больных.

Препараты нуклеиновых кислот. Первая публикация о способности нуклеиновой кислоты повышать общую сопротивляемость организма

появилась в 1892 г. Нуклеиновую кислоту использовали для лечения многих заболеваний: туберкулеза, холеры, сибирской язвы, дифтерии и др. В настоящее время установлено, что нуклеиновые кислоты являются важным компонентом иммунологического гомеостаза организма. В основе большинства нарушений функций организма лежат изменения, обусловленные метаболическими расстройствами; расстройства нуклеинового обмена являются одной из причин индукции патологических процессов. Это объясняет широкий спектр действия лекарственных препаратов, созданных на основе нуклеиновых кислот: нуклеинат натрия, Деринат , Полудан , Ридостин и др.

Нуклеинат натрия представляет собой натриевую соль нуклеиновой кислоты, полученную из дрожжей путем гидролиза. Препарат способен стимулировать факторы врожденного и приобретенного иммунитета за счет активной пролиферации Т- и В-лимфоцитов. Другими представителями данной группы являются Деринат → натриевая соль нативной ДНК, полученной из молок осетровых рыб; Полудан → высокоочищенная смесь натриевых солей ДНК и РНК, также выделенная из молок осетровых рыб; Ридостин → препарат РНК, полученный на основе пекарских дрожжей. Условно к данной группе препаратов можно отнести препараты, основанные на составных компонентах нуклеиновых кислот: пиримидиновые и пуриновые производные (например, метилурацил), а также производные аденозина и гипоксантина [например, Рибоксин (инозин) и Инозин пранобекс).

Лекарственные средства данной группы способны моделировать первичный и повторный иммунные ответы, индуцировать интерфероногенез и противоопухолевый иммунитет, а также активировать продукцию противовоспалительных эндогенных кортикостероидов. Кроме этого, природные и синтетические препараты нуклеиновых кислот, содержащие предшественников ДНК и РНК, индуцируют рост и размножение как эукариотических, так и прокариотических клеток.

Важнейшее практическое значение имеет группа препаратов с иммуносупрессивной активностью, появление которых в 1960-х годах в клинической практике было связано с необходимостью подавления реакции отторжения тканей при трансплантации органов и лечения аутоиммунных заболеваний.

К препаратам, способным вызывать активную супрессию специфического иммунного ответа к какому-либо аутоантигену, относят рекомбинантные антигены и толерогены, представляющие собой комплекс рекомбинантных антигенов и неиммуногенных носителей

Специфическое воздействие		Неспецифическое
активное	пассивное	воздействие
Рекомбинантные антигены, IgE-связывающие молекулы и созданные на их основе толерогены	Иммунотоксины, антиидиоти- пические антитела в качестве мишени для аутоантител. Специфическая плазмоимму- носорбция	Моноклональные антитела против цитокинов. Неспецифическая гемосорбция и иммуноплазмаферез

Таблица 9.2. Способы подавления иммунного ответа с помощью иммунобиопрепаратов

(табл. 9.2). Препараты данной группы применяют для формирования иммунологической толерантности, имеющей большое практическое значение. Феномен иммунологической толерантности используют для решения многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергических и других патологических состояний, связанных с «агрессивным поведением» иммунной системы.

Пассивная иммуносупрессия достигается путем применения иммунотоксинов, полученных при конъюгации цитостатика или токсина с антителами, что позволяет направленно транспортировать лекарственное средство к определенному рецептору клетки или к конкретной субпопуляции клеток, например к Т-лимфоцитам (Т-хелперам). Для создания таких препаратов используют моноклональные антитела (или их Fab-фрагменты) и молекулы клеточных токсинов (например, рицина) или их фрагменты. Данные препараты способны целенаправленно «блокировать» те или иные клетки: опухолевые; гипертрофированные субпопуляции лимфоцитов; клетки, пораженные внутриклеточными паразитами (микробами, вирусами и др.), что определяет перспективы их использования.

Пассивное подавление иммунного ответа возможно и в условиях применения антиидиотипических антител, образующихся против антигенсвязывающих центров (эпитопов), которые могут являться мишенью для аутоантител, образующихся в больших концентрациях при аутоиммунных заболеваниях. С химической точки зрения антиидиотипические антитела воспроизводят структуру антигена, являясь его аналогом, что определяет развитие нового направления в получении диагностических и вакцинных препаратов.

Среди методов пассивной иммуносупрессии следует выделить также специфическую плазмоиммуносорбцию, применение которой

крайне необходимо при тяжелых формах аллергических заболеваний. С помощью этого метода можно ликвидировать из крови больного аллергенспецифические антитела и глобулины. Следует отметить, что отличительной чертой плазмосорбции является то, что выделенная плазма пропускается через специфический сорбент, «очищаясь» и вновь возвращаясь в кровоток пациенту.

К иммунодепрессорам относят синтетические вещества (меркаптопурин, азатиоприн, циклофосфамид, преднизон и пр.), отдельные антибиотики (циклоспорин А, блеомицин), а также зообиотехнологические продукты (антилимфоцитарный иммуноглобулин, лимфоцитарные кейлоны).

Антилимфоцитарный иммуноглобулин — это препарат, полученный в ходе гетерологической иммунизации, как правило, из сыворотки кроликов или лошадей, иммунизированных Т-лимфоцитами человека. Антигенами в данном случае выступают лимфоциты грудного протока, клетки селезенки, лимфатических узлов, периферической крови. Как и все препараты иммуноглобулинов, они подлежат контролю на стерильность, апирогенность, безвредность. Антилимфоцитарные иммуноглобулины применяют для профилактики и лечения реакции отторжения трансплантатов при пересадке органов, а также при апластической анемии (при отсутствии показаний к пересадке костного мозга).

Лимфоцитарные кейлоны, представляющие собой гликопротеиды и вырабатывающиеся лимфобластами, клетками тимуса и селезенки, относятся к тканеспецифическим ингибиторам клеточного деления. Иммунодепрессивное действие кейлонов основано на подавлении синтеза ДНК и пролиферации лимфоцитарных клеток при сохранении процесса дифференцировки лимфоцитов. Лимфоцитарные кейлоны обладают не только фазовой специфичностью, но и узкой клеточной специфичностью. Доказано, например, что лимфоцитарные кейлоны, которые были получены из разных популяций лимфоцитов селезенки, имели высокую супрессорную активность относительно антителообразования.

В последние годы с помощью генетических методов получают моноклональные антитела против отдельных видов иммунных клеток или цитокинов, ответственных за развитие иммунного воспаления. Производство моноклональных антител относится к быстро развивающейся отрасли фармацевтической индустрии.

Прорывом в области получения новых лекарственных средств на основе антител стало открытие гибридомной технологии в 1975 году Д. Кёлером и Ц. Мильштейном. В основе предложенного метода

лежит слияние антигенспецифических лимфоцитов, продуцирующих антитела, с опухолевыми клетками той же тканевой принадлежности с последующим клонированием получившихся гибридов — гибридом. В результате стало возможным получение так называемого «бессмертного» клона клеток-продуцентов, производящего антитела с определенной специфичностью (моноклональные или моноспецифические антитела).

Стадии получения моноклональных антител:

- 1) введение мышам специфического антигена, вызывающего продукцию определенных антител;
- 2) удаление и гомогенизация селезенки мышей с целью получения суспензии В-клеток, продуцирующих специфические антитела;
- 3) соединение клеток селезенки с клетками миеломы или плазмоцитомы, особенностью которых является непрерывный рост в культуре, с образованием гибридных клеток;
- 4) помещение смеси клеток в селективную среду для роста специфических гибридных клеток;
- 5) пролиферация гибридных клеток с образованием клона гибридом, которые подвергаются проверке на продукцию необходимых антител;
- 6) культивирование необходимых гибридом для получения в дальнейшем значительного количества моноклональных антител.

Важным этапом в получении моноклональных антител является селекция гибридов, в частности активно применяется метод метаболической селекции. Метод основан на том, что нормальные клетки используют два метаболических пути синтеза нуклеотидов (пуринов и пиримидинов): основной и резервный, тогда как у гибридов основной путь синтеза нуклеотидов «выключен». При основном пути нуклеотиды образуются из аминокислот и углеводных предшественников; при резервном пути синтез нуклеотидов происходит из гипоксантина (пурины) и из дезокситимидина (пиримидины). С целью отбора гибридов создают особую селективную питательную среду, в которой один из компонентов (например, аминоптерин) «блокирует» основной путь образования нуклеотидов, а другие (гипоксантин и тимидин) — активируют резервный путь синтеза. В таких условиях остаются функционально активными только гибридомы.

Области применения моноклональных антител:

- ▶ диагностика различных заболеваний (бактериальных, вирусных, онкологических) и их локализации;
- определение группы крови;

- создание лекарственных препаратов (например, иммуноадгезины, рекомбинантные иммунотоксины, противоопухолевые препараты, иммуноферменты антицитокиновые и др.);
- создание систем адресной доставки лекарственных веществ;
- иммуносорбция (удаление из крови пациента антигенов или клеток определенной специфичности, например, при аутоиммунных заболеваниях);
- иммунологические методы определения и разделения субпопуляций клеток;
- определение отдельных стадий развития клеток (например, при оценке эмбрионального развития);
- более точное типирование тканей для трансплантации органов;
- идентификация биологически активных молекул;
- анализ сложных смесей антигенов;
- получение квадром, являющихся результатом гибридизации двух гибридом, каждая из которых продуцирует моноклональные антитела к различным антигенам;
- ▶ получение абзимов каталитически активных антител (искусственных ферментов).

Моноклональные антитела нашли применение в целом ряде методов. Моноклональные антитела (цоликлоны анти-А и анти-В) используют с целью определения агглютиногенов эритроцитов в реакции агглютинации. Они высокочувствительны, обладают высокой стандартностью, характеризуются быстротой наступления и четкостью агглютинации. Применение моноклональных антител повышает достоверность результатов даже при низкой экспрессии антигенов. Методика определения группы крови с помощью моноклональных антител позволяет решить задачу отказа от доноров, кровь которых используют в процессе приготовления изогемагглютинирующих сывороток. Следует отметить, что цоликлоны применяют с целью типирования эритроцитов различных специфичностей, включая редкие.

Реакция иммунофлюоресценции позволяет проводить качественное и количественное определение антигенов и антител. В основе данного анализа лежит принцип специфического взаимодействия, происходящего между антигеном и соответствующим ему моноклональным антителом. Образовавшийся комплекс определяют с помощью конъюгата, который представляет собой анти-антитело в комплексе с ферментной меткой (например, пероксидазой хрена).

Метод проточной цитометрии направлен на быстрое оптическое измерение параметров клетки, ее органелл, а также различных функ-

ций и процессов, происходящих в ней. Метод основан на регистрации флюоресценции и светорассеяния от каждой взятой клетки в клеточной суспензии. Клеточную суспензию, предварительно помещая в нее метки в виде флюоресцирующих моноклональных антител или флюоресцентных красителей, подают в поток жидкости, проходящий через специальную проточную ячейку. Детекторы, фиксирующие флюоресценцию, благодаря меткам позволяют измерить размеры клеток, судить о соотношении ядро/цитоплазма, неоднородности и гранулярности клеток, а также определить субпопуляционный состав клеточной суспензии и др.

Следует отметить, что применение моноклональных антител, которые являлись мышиными антителами, в качестве лекарственных препаратов ограничено в связи с выраженным иммунным ответом на гетерогенный белок.

Генно-инженерный подход в работе с моноклональными антителами позволил повысить их терапевтические возможности. Используя технику рекомбинантных ДНК, исследователи сумели принудить клетки грызунов к выработке антител с входящими в состав человеческими Fc-фрагментами, которые получили название химерных. Химерные моноклональные антитела в своей структуре имеют более 65% человеческого иммуноглобулина. Выделяют еще гуманизированные моноклональные антитела, это когда константная часть в своей структуре имеет до 95% человеческого иммуноглобулина. Кроме того, существуют трансгенные технологии (фаговый дисплей), которые позволили создать полностью человеческие моноклональные антитела. Применение химерных и гуманизированных антител используется преимущественно при лечении иммунных и онкологических заболеваний.

Международные названия лекарственных препаратов, созданных на основе моноклональных антител, имеют свои особенности — окончание включает -mab (от monoclonal antibody). Добавление буквы «о» означает, что антитело получено от мыши, и окончание у таких антител -omab. Химерные антитела носят названия с окончанием -ximab. Гуманизированные антитела имеют окончание -zumab, полностью человеческие — -umab.

В настоящее время зарегистрирован целый ряд препаратов, содержащих моноклональные антитела (табл. 9.3).

В отличие от традиционных препаратов, моноклональные антитела обладают высокой специфичностью к определенным мишеням — антигенам. Именно поэтому использование в качестве терапевтических

Таблица 9.3. Лекарственные средства, разработанные на основе моноклональных антител

Международное наименование	«Мишень»	Показания к применению
Аbсіхітаb (абциксимаб)	Рецептор гликопротеида IIb/IIIa	Острый коронарный синдром
Adalimumab (адалимумаб)	Фактор некроза опухоли альфа	Аутоиммунные заболевания
Alemtuzumab (алемтузумаб)	-	Хронический лимфоцитарный лейкоз
Basiliximab (базиликсимаб)	-	Отторжение трансплантата
Bevacizumab (бевацизумаб)	Фактор роста эндотелия сосудов	Колоректальный рак
Cetuximab (цетуксимаб)	Рецептор эпидермального фактора роста	Колоректальный рак
Daclizumab (даклизумаб)	Рецепторы ИЛ-2α	Отторжение трансплантата
Eculizumab (экулизумаб)	Система комплемента С5	Воспалительные заболевания, включая параксизмальную гемоглобинурию
Efalizumab (эфализумаб)	Адгезивный рецептор CD11a	Воспалительные заболевания (псориаз)
Ibritumomab tiuxetan (ибритумомаб тиуксетан)	CD20	Неходжкинская лимфома
Muromonab-CD3 (муромонаб CD3)	Рецепторы CD3	Отторжение трансплантата
Omalizumab (омализумаб)	Иммуноглобулин E (IgE)	Иммуновоспалительные заболевания (главным образом астма)
Panitumumab (панитумумаб)	Рецептор эпидермального фактора роста	Колоректальный рак
Ranibizumab (ранибизумаб)	Фактор роста эндотелия сосудов	Макулярная дистрофия
Ozogamicin Gemtuzumab (озогамицин гемтузумаб)	CD33	Острый миелолейкоз

Окончание табл. 9.3

Международное наименование	«Мишень»	Показания к применению
Rituximab (ритуксимаб)	CD20	Неходжкинская лимфома
Tositumomab (тоситумомаб)	CD20	Неходжкинская лимфома
Trastuzumab (трастузумаб)	Рецептор эпидермального фактора роста	Рак молочной железы

агентов моноклональных антител стало для медицины революционным стратегическим этапом в смене концепции лечения — от неспецифической к специфической (таргетной) терапии.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Иммунобиотехнология раздел биотехнологии, определение, цели и задачи.
- 2. Основная структура иммунной системы, виды иммунитета, общий принцип функционирования.
- 3. Виды и причины нарушения иммунитета.
- 4. Классификации иммунотропных препаратов.
- Способы усиления иммунного ответа с помощью иммунобиопрепаратов.
- Вакцины: классификация, основные группы и представители, особенности получения.
- 7. Сыворотки: классификация, основные группы и представители, особенности получения.
- 8. Препараты тимуса: классификация, источники получения, применение.
- 9. Препараты нуклеиновых кислот: представители, применение.
- 10. Способы подавления иммунного ответа с помощью иммунобиопрепаратов.
- 11. Способы активной и пассивной иммуносупрессии.
- 12. Моноклональные антитела, технология получения, области применения.