Пурышева, Наталия Сергеевна.

Π88

ОГЭ-2020. Физика. 10 тренировочных вариантов экзаменационных работ для подготовки к основному государственному экзамену / Н. С. Пурышева. — Москва : Издательство АСТ, 2019. - 104 с. — (ОГЭ-2020. Это будет на экзамене).

ISBN 978-5-17-116008-1

Сборник содержит 10 тренировочных вариантов экзаменационных работ по физике и предназначен для подготовки к основному государственному экзамену в 9 классе.

Каждый вариант составлен в полном соответствии с требованиями основного государственного экзамена по физике, включает задания разных типов и уровней сложности.

В конце книги даны ответы для самопроверки на все задания.

Предлагаемые тренировочные варианты помогут учителю организовать подготовку к итоговой аттестации, а учащимся — самостоятельно проверить свои знания и готовность к сдаче выпускного экзамена.

УДК 373:53 ББК 22.3я721

[©] Пурышева Н.С., 2019

^{© 000 «}Издательство АСТ», 2019

СОДЕРЖАНИЕ

Предисловие		• • • • • • • • • • • • • • • • • • • •	4
Справочные материалы			6
Вариант 1			9
Вариант 2			14
Вариант 3			21
Вариант 4			30
Вариант 5			37
Вариант 6			45
Вариант 7			53
Вариант 8			61
Вариант 9			68
Вариант 10			76
Контрольный вариант			84
Система оценивания экзаменационной	й работы по физик	e	91
Ответы			94
Ответы к заданиям 22, 24, 2, 3, 4			95
Образцы возможного выполнения лаб	ораторной работы		98
Образцы решения задач с развёрнуты	м ответом 25 и 26		100
Отроты к запаниям контрольного вари	121172		103

ПРЕДИСЛОВИЕ

Предлагаемый сборник содержит 10 тренировочных экзаменационных вариантов для подготовки к ОГЭ по физике. 11-й вариант — контрольный.

Тренировочные экзаменационные варианты по содержанию заданий соответствуют реальным вариантам, которые используются при проведении Государственной итоговой аттестации (ОГЭ) по физике в 9 классе.

Каждый вариант контрольных и измерительных материалов (КИМ) состоит из двух частей и включает в себя 26 заданий, различающихся формой и уровнем сложности.

Часть 1 содержит 22 задания, из которых 13 заданий с выбором ответа из четырёх возможных, 8 заданий, к которым требуется привести краткий ответ в виде набора цифр, и 1 задание с развёрнутым ответом. Задания 1, 6, 9, 15 и 19 с кратким ответом представляют собой задания на установление соответствия позиций, представленных в двух множествах, или задания на выбор двух правильных утверждений из предложенного перечня (множественный выбор).

Часть 2 содержит 4 задания (23-26), для которых необходимо привести развёрнутый ответ. Задание 23 представляет собой практическую работу, для выполнения которой используется лабораторное оборудование; задание 24 — качественную задачу, задания 25 и 26 — вычислительные задачи.

В экзаменационной работе проверяются знания и умения, приобретённые в результате освоения следующих разделов курса физики основной школы.

Механические явления.

Тепловые явления.

Электромагнитные явления.

4. Квантовые явления.

Общее количество заданий в экзаменационной работе по каждому из разделов приблизительно пропорционально его содержательному наполнению и учебному времени, отводимому на изучение данного раздела в школьном курсе.

Задания части 2 (задания 23-26) проверяют комплексное использование знаний и умений из различных разделов курса физики.

Экзаменационная работа проверяет следующие виды деятельности:

- 1. Владение основным понятийным аппаратом школьного курса физики.
 - 1.1. Знание и понимание смысла понятий.
 - 1.2. Знание и понимание смысла физических величин.
 - 1.3. Знание и понимание смысла физических законов.
 - 1.4. Умение описывать и объяснять физические явления.
- 2.Владение основами знаний о методах научного познания и экспериментальными умени-
 - 3. Решение задач различного типа и уровня сложности.
 - 4. Понимание текстов физического содержания.

Использование приобретённых знаний и умений в практической деятельности и повседневной жизни.

Владение основами знаний о методах научного познания и экспериментальные умения проверяются в заданиях 18, 19 и 23. Задание 18 с выбором ответа и задание 19 с кратким ответом контролируют следующие умения:

- формулировать (различать) цели проведения (гипотезу, выводы) описанного опыта или наблюдения;
- конструировать экспериментальную установку, выбирать порядок проведения опыта в соответствии с предложенной гипотезой;
- использовать физические приборы и измерительные инструменты для прямых измерений физических величин;
- проводить анализ результатов экспериментальных исследований, в том числе выраженных в виде таблицы или графика.

ПРЕДИСЛОВИЕ 5

Экспериментальное задание 23 проверяет:

1) умение проводить косвенные измерения физических величин: плотности вещества; силы Архимеда; коэффициента трения скольжения; жёсткости пружины; периода и частоты колебаний математического маятника; момента силы, действующего на рычаг; работы силы упругости при подъёме груза с помощью подвижного или неподвижного блока; работы силы трения; оптической силы собирающей линзы; электрического сопротивления резистора; работы и мощности тока;

- 2) умение представлять экспериментальные результаты в виде таблиц, графиков или схематических рисунков и делать выводы на основании полученных экспериментальных данных: о зависимости силы упругости, возникающей в пружине, от степени деформации пружины; о зависимости периода колебаний математического маятника от длины нити; о зависимости силы тока, возникающей в проводнике, от напряжения на концах проводника; о зависимости силы трения скольжения от силы нормального давления; о свойствах изображения, полученного с помощью собирающей линзы;
- 3) умение проводить экспериментальную проверку физических законов и следствий: проверка правила для электрического напряжения при последовательном соединении резисторов, проверка правила для силы электрического тока при параллельном соединении резисторов.

Понимание текстов физического содержания проверяется заданиями 20–22. Для одного и того же текста формулируются вопросы, которые контролируют умения:

- понимать смысл использованных в тексте физических терминов;
- отвечать на прямые вопросы к содержанию текста;
- отвечать на вопросы, требующие сопоставления информации из разных частей текста;
- использовать информацию из текста в измененной ситуации;
- переводить информацию из одной знаковой системы в другую.

Задания, в которых необходимо решить задачи, представлены в различных частях работы. Это три задания с кратким ответом (задания 7, 10 и 16) и три задания с развернутым ответом. Задание 24 — качественный вопрос (задача), представляющий собой описание явления или процесса из окружающей жизни, для которого учащимся необходимо привести цепочку рассуждений, объясняющих протекание явления, особенности его свойств и т.п.

Задания для ОГЭ по физике характеризуются также по способу представления информации в задании или дистракторах и подбираются таким образом, чтобы проверить умения учащихся читать графики зависимости физических величин, табличные данные или использовать различные схемы или схематичные рисунки.

В экзаменационной работе представлены задания разных уровней сложности: базового, повышенного и высокого.

Задание с кратким ответом считается выполненным, если записанный ответ совпадает с верным ответом. Задания 1, 6, 9, 15 и 19 оцениваются в 2 балла, если верно указаны все элементы ответа; в 1 балл, если правильно указан хотя бы один элемент ответа, и в 0 баллов, если нет ни одного элемента правильного ответа.

Задания с развёрнутым ответом оцениваются двумя экспертами с учётом правильности и полноты ответа. Максимальный первичный балл за выполнение экспериментального задания — 4 балла; за решение расчётных задач высокого уровня сложности — 3 балла; за решение качественной задачи и выполнение задания 22-2 балла. К каждому заданию приводится подробная инструкция для экспертов, в которой указывается, за что выставляется каждый балл — от 0 до максимального балла.

В экзаменационном варианте перед каждым типом задания предлагается инструкция, в которой приведены общие требования к оформлению ответов.

На основе баллов, выставленных за выполнение всех заданий работы, подсчитывается общий балл, который переводится в отметку по пятибалльной шкале.

Максимальный балл за верное выполнение всей работы не изменился и составляет 40 баллов (не изменилось также и распределение баллов за задания разного уровня сложности).

Тренировочные варианты экзаменационных работ составлены в соответствии с Демоверсией и спецификацией 2019 года.

В связи с возможными изменениями в формате и количестве заданий рекомендуем в процессе подготовки к экзамену обращаться к материалам сайта его официального разработчика экзаменационных заданий — Федерального института педагогических измерений: www.fipi.ru

СПРАВОЧНЫЕ МАТЕРИАЛЫ

Десятичные приставки			
Наименование	Обозначение	Множитель	
гига	Γ	10^{9}	
мега	M	10^{6}	
кило	к	10	
гекто	г	10^{2}	
санти	c	10^{-2}	
милли	М	10^{-3}	
микро	мк	10^{-6}	
нано	н	10 ⁻⁹	

Константы		
ускорение свободного падения на Земле	$g=10~rac{ ext{M}}{ ext{c}^2}$	
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \frac{\text{H} \cdot \text{m}^2}{\text{kr}^2}$	
скорость света в вакууме	$c=3{\cdot}10^8~{ m rac{M}{c}}$	
элементарный электрический заряд	$e = 1,6 \cdot 10^{-19} \ \mathrm{Kp}$	

Плотность			
бензин	710 $\frac{\kappa\Gamma}{M^3}$	древесина (сосна)	400 кг м ³
спирт	800 $\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	парафин	900 кг м ³
керосин	800 $\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	алюминий	$2700 \frac{\kappa r}{\text{m}^3}$
масло машинное	900 $\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	мрамор	$2700 \frac{\text{K}\Gamma}{\text{M}^3}$
вода	1000 $\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	цинк	$7100 \frac{\kappa \Gamma}{\text{m}^3}$
молоко цельное	$1030 \frac{\mathrm{K}\Gamma}{\mathrm{m}^3}$	сталь, железо	7800 кг м³
вода морская	$1030 \frac{\mathrm{K}\Gamma}{\mathrm{m}^3}$	медь	8900 кг м ³
ртуть	$13600 \frac{\mathrm{K}\Gamma}{\mathrm{m}^3}$	свинец	$11350~\frac{\text{kf}}{\text{m}^3}$

СПРАВОЧНЫЕ МАТЕРИАЛЫ 7

Удельная				
теплоёмкость воды	4200 Дж кг · ℃	теплота парообразования воды	$2,3\cdot10^6 \frac{\mathrm{Дж}}{\mathrm{кr}}$	
теплоёмкость спирта	$2400 \ rac{ extstyle $	теплота парообразования спирта	$9,0\cdot10^5rac{\mathrm{Дж}}{\mathrm{\kappa}\mathrm{r}}$	
теплоёмкость льда	$2100 \ rac{ extstyle e$	теплота плавления свинца	$2,5\cdot10^4rac{ extsf{Дж}}{ extsf{кr}}$	
теплоёмкость алюминия	$920 rac{ extstyle Дж}{ ext{кг} \cdot extstyle C}$	теплота плавления стали	$7.8\cdot10^4 \frac{\text{Дж}}{\text{кг}}$	
теплоёмкость стали	$500 rac{ extsf{Дж}}{ ext{кг} \cdot extsf{C}}$	теплота плавления олова	$5,9\cdot10^4rac{\mathrm{Дж}}{\mathrm{\kappa}\mathrm{r}}$	
теплоёмкость цинка	$400 rac{ extstyle Дж}{ ext{кг} \cdot extstyle C}$	теплота плавления льда	$3,3\cdot10^5rac{\mathrm{Дж}}{\mathrm{кr}}$	
теплоёмкость меди	400 Дж кг · °С	теплота сгорания спирта	$2,9\cdot10^7 rac{\mathrm{Дж}}{\mathrm{\kappa r}}$	
теплоёмкость олова	$230 rac{ extstyle Дж}{ ext{кг} \cdot extstyle extstyle }$	теплота сгорания керосина	$4,6\cdot10^7 rac{\mathrm{Дж}}{\mathrm{кr}}$	
теплоёмкость свинца	$130 rac{ extstyle Дж}{ ext{кг} \cdot extstyle C}$	теплота сгорания бензина	$4,6\cdot10^7 rac{\mathrm{Дж}}{\mathrm{\kappa}\mathrm{r}}$	
теплоёмкость бронзы	$420~rac{ extstyle exts$			

Температур	а плавления	Температу	ра кипения
свинца	327 °C	воды	100 °C
олова	232 °C	спирта	78 °C
льда	0 °C		

Удельное электрическое сопротивление, $\frac{\mathrm{Om} \cdot \mathrm{mm}^2}{\mathrm{m}}$ (при 20 $^{\circ}$ C)			
серебро	0,016	никелин	0,4
медь	0,017	нихром (сплав)	1,1
алюминий	0,028	фехраль	1,2
железо	0,10		

Нормальные условия: давление 10^5 Па, температура $0\,^{\circ}$ С.

ВАРИАНТ 1

Часть 1

Ответом к заданиям 1, 6, 9, 15, 19 является последовательность цифр. Запишите эту последовательность цифр в поле ответа в тексте работы.

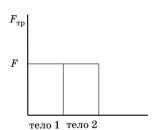
При выполнении заданий 2-5, 8, 11-14, 17, 18 и 20, 21 в поле ответа запишите одну цифру, которая соответствует номеру правильного ответа.

Ответы к заданиям 7, 10 и 16 запишите в виде числа с учётом указанных в ответе единиц.

Установите соответствие между группами физических понятий и примером понятия, относящегося к соответствующей группе. Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца.

Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ПОНЯТИЯ

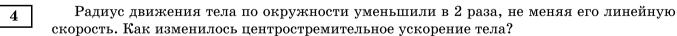

- А) физическая величина
- Б) единица физической величины
- В) прибор для измерения физической величины

ПРИМЕРЫ

- 1) расширение газа
- 2) внутренняя энергия
- 3) кристаллическая решётка
- 4) миллиметр ртутного столба
- 5) барометр

Ответ	A	Б	В
Olbel.			

Учащийся выполнял эксперимент по измерению силы трения, действующей на два тела, движущихся по горизонтальным поверхностям. Масса первого тела m_1 , масса второго тела m_2 , причём $m_1=2m_2$. Он получил результаты, представленные на рисунке в виде диаграммы. Какой вывод можно сделать из анализа диаграммы?



- 1) сила нормального давления $N_2 = 2N_1$
- 2) сила нормального давления $N_1 = N_2$
- 3) коэффициент трения $\mu_1 = \mu_2$
- 4) коэффициент трения $\mu_2 = 2\mu_1$

Ответ:

3 Камень брошен вертикально вверх. В момент броска его кинетическая энергия была равна 40 Дж. Какую кинетическую энергию будет иметь камень в верхней точке траектории полёта? Сопротивлением воздуха пренебречь.

Ответ: Дж.

1) увеличилось в 4 раза

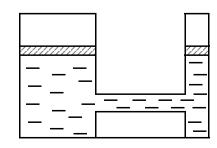
3) уменьшилось в 2 раза

2) уменьшилось в 4 раза

4) увеличилось в 2 раза

Ответ:

Сила F_1 , действующая со стороны жидкости на один поршень гидравлической машины, в 16 раз меньше силы F_2 , действующей на другой поршень. Сравните модули работы (A_1) и (A_2) этих сил, совершаемой при перемещении поршней? Трением пренебречь.



3)
$$A_2 = 16A_1$$

2)
$$A_1 = 16A_2$$

4)
$$A_1 = 4A_2$$

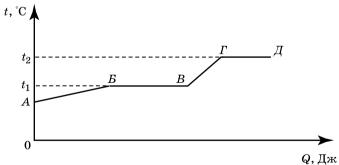
Ответ:

- На рисунке приведены графики зависимости проекции скорости движения от времени для двух тел, движущихся вдоль оси Ox. Из приведённых ниже утверждений выберите $\partial \epsilon a$ правильных и запишите их номера.
 - 1) Проекции скорости и ускорения тела 2 на ось Ox отрицательны только в моменты времени, большие t_2 .
 - 2) В момент времени t_1 модуль ускорения тел одинаков.
 - 3) Модуль скорости тела 1 в любой момент времени больше, чем тела 2.
 - 4) В момент времени t_2 тело 2 остановилось

На какое расстояние из состояния покоя переместился вагон массой 10 т, если при этом равнодействующей силой была совершена работа $2000~{\rm кДж?}$ Вагон двигался с ускорением $1~{\rm \frac{M}{c^2}}$.

Otbet:

- Внутренняя энергия тела зависит от
 - А. Массы тела
 - Б. Положения тела относительно поверхности Земли
 - В. Скорости движения тела (при отсутствии трения)

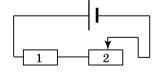

Правильным является ответ

- 1) только А
- 2) только Б
- 3) только В
- 4) только Б и В

Ответ:

9

На рисунке представлен график зависимости температуры некоторого вещества от полученного количества теплоты. Первоначально вещество находилось в твёрдом состоянии.


Используя данные графика, выберите из предложенного перечня ∂ea верных утверждения. Укажите их номера.

- 1) Удельная теплоёмкость вещества в твёрдом состоянии равна удельной теплоёмкости вещества в жидком состоянии.
 - 2) Температура кипения вещества равна t_1 .
 - 3) В точке В вещество находится в жидком состоянии.
- 4) В процессе перехода из состояния Б в состояние В внутренняя энергия вещества увеличивается.
 - 5) Участок графика ГД соответствует процессу плавления вещества.

Ответ:	
--------	--

Какое количество теплоты выделяется при превращении 500 г воды, взятой при **10** $0~^{\circ}\mathrm{C}$, в лёд при температуре $-10~^{\circ}\mathrm{C}$? Потерями энергии на нагревание окружающего воздуха пренебречь. Ответ: КДж. Два точечных заряда будут притягиваться друг к другу, если заряды 11 1) одинаковы по знаку и любые по модулю 2) одинаковы по знаку и обязательно одинаковы по модулю 3) различны по знаку, но обязательно одинаковы по модулю 4) различны по знаку и любые по модулю Ответ: На рисунке изображена схема участка электрической цепи **12** АВ. В эту цепь параллельно включёны два резистора сопротивлением R_1 и R_2 . Напряжения на резисторах соответственно U_1 и U_2 . По какой из формул можно определить общее сопротивление участка АВ? 1) $R = R_1 + R_2$ 2) $R = \frac{R_1 + R_2}{R_1 R_2}$ 3) $R = R_1 - R_2$ 4) $R = \frac{R_1 R_2}{R_1 + R_2}$ Ответ: Внутри катушки, соединённой с гальванометром, находится малая катушка, под-**13** ключённая к источнику постоянного тока. В каком(-их) из перечисленных опытов гальванометр зафиксирует индукционный ток? А. В малой катушке выключают электрический ток. Б. Малую катушку вынимают из большой. 1) только в опыте А 3) в обоих опытах 2) только в опыте Б 4) ни в одном из опытов Ответ: Луч света падает на плоское зеркало. Угол между падающим лучом и отражённым 14 увеличили на 30°. Угол между зеркалом и отражённым лучом 1) увеличился на 30° 3) уменьшился на 30° 2) увеличился на 15° 4) уменьшился на 15° Ответ:

На рисунке изображена электрическая цепь, состоящая из источника тока, резистора и реостата. Как изменяются при передвижении ползунка реостата влево сопротивление реостата 2 и напряжение на резисторе 1?

Для каждой физической величины определите соответствующий характер изменения.

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться

Ответ:	Сопротивление реостата 2	Напряжение на резисторе 1
ответ.		