СОДЕРЖАНИЕ

21
23
23
24
26
26
27
28
31
32
33
33
33
35
37
38
38
39
40
42
42
43
44
44
45
46
47
48
48
49
50
51
52
53
54
55
55
55 56
55 56 57
55 56 57 58
55 56 57 58 58
55 56 57 58 58 60
55 56 57 58 58 60 61

Лазер: пороговое условие генерации	. 62
Стационарная генерация лазерного излучения	. 63
2.8. Характеристика излучения в зависимости от времени	. 64
Стационарное решение скоростных уравнений	. 67
Слабые релаксационные колебания	. 68
Сильные релаксационные колебания	. 69
Появление релаксационных колебаний	. 70
ЗАДАЧИ	. 70
Глава 3 ТИПЫ ПАЗЕРОВ	72
Обзорная узраитеристика разных типов тазеров	73
31 Линны роли и выходиные монности	. 73
3.2. Длины Болги и Былодные мощности	78
3.3. Порестранваемые лазеры	. 70 . 80
	. 00 . 01
2.5. Сроруководиные достовное инстити ен	. 01 02
2.6. Попоматры насеров	. 02
э.о. параметры лазеров	. 03
ЗАДАЧИ	. 84
Глава 4. ЛАЗЕРНЫЕ ПЕРЕХОДЫ В НЕИТРАЛЬНЫХ АТОМАХ	. 85
4.1. Гелий-неоновые лазеры	. 85
Схема энергетических уровней	. 86
Возбуждение	. 87
Длины волн	. 87
Конструктивное исполнение	. 89
Свойства пучка	. 90
4.2. Лазеры на парах металла (Cu, Au)	. 91
Схема энергетических уровней	. 91
Конструктивное исполнение	. 93
Области применения	. 94
Извлечение меди из соединений	. 95
4.3. Йодные лазеры, COIL	. 95
ЗАДАЧИ	. 97
Глава 5. ИОННЫЕ ЛАЗЕРЫ	. 98
5.1. Лазеры лля коротковолновой области.	. 98
5.2. Ионные лазеры на инертном газе	100
Ионные аргоновые дазеры	100
Конструктивное исполнение	103
Ионные криптоновые дазеры	104
Области применения	105
5.3. Ионные дазеры на дарах металда (С. Se. С.)	105
He_Cd_ u He_Se_macenti	105
По-сс- и по-ос-лазоры	105
прочислазсры на парах металла	100
	100
Iлава 6. МОЛЕКУЛЯРНЫЕ ИНФРАКРАСНЫЕ ЛАЗЕРЫ (ИРАЗЕРЫ)	109
6.1. Лазеры дальнего ИК-диапазона	109
Лазеры с оптической накачкой	109
Лазеры дальнего ИК-диапазона с электрической накачкой	. 111

6.2	СО -пазеры	111
0.2	Процессы возбужления в газовых разрялах	
	Возбужление	
	Схема энергетических уровней	114
	Линии лазерного излучения	116
	Непрерывный и импульсный режимы генерации	117
	Лазер с мелленным аксиальным газовым потоком	118
	Лазер в герметичном корпусе (англ. sealed-off-laser)	120
	Волноволные дазеры (англ. waveguide laser).	120
	Лазеры с быстрым газовым потоком.	121
	Лазеры с высокочастотным возбуждением	122
	Лазеры атмосферного давления с поперечной накачкой (TEA-laser)	122
	Газолинамические СОлазеры.	123
	Перестраиваемые СОлазеры высокого давления	124
6.3.	СО-лазеры	124
6.4.	Фтороволоролные (НF)-лазеры.	. 127
	Схема энергетических уровней и процессы возбужления	127
	Конструктивное исполнение	. 129
	DF-лазеры	130
	ЗАЛАЧИ	130
Γπορο 7 Ν	ΑΟΠΕΚΛΠαρμγιε νω πασεργι	121
тлава 7. N 7 1		131
7.1.		132
	Конструктирное исполнение	132
7.2		134
1.2.	Энергетинеские упорци	135
	Конструктивное исполнение	137
	Частотная селекция для литографских назеров	140
	Преобразование частоты	140
	За Пачи	141
Г 0 П		142
1 лава 8. Л о 1	АЗЕРЫ НА КРАСИТЕЛЯХ	143
ð.1.	Своиства лазеров на красителях	145
0.2	Оптическая накачка	145
8.2. 9.2	Возоуждение с помощью ламп-вспышек	143
0.3.	Иматические помощью лазера	140
		1/10
		150
	ЗАПАЦИ	151
	Элдали	131
Глава 9. Т	ВЕРДОТЕЛЬНЫЕ ЛАЗЕРЫ	152
9.1.	Рубиновые лазеры	153
	Схема энергетических уровней	153
	Излучение рубиновых лазеров	155
	Конструктивное исполнение рубиновых лазеров	156
9.2.	Лазеры на алюмоиттриевом гранате с неодимом и альтернативные варианты	157
	Схема энергетических уровней лазеров Nd: ИАГ	158
	Лазерное излучение	160

	Лазеры на Nd: Cr: ГСГГ (гадолиний-скандий-галлиевый гранат)	162
	Лазеры на Nd: ИЛФ (иттрий-литий-фторид)	163
	Кристаллы, сохраняющие поляризацию	163
	Лазерные кристаллы с диодным возбуждением	164
	Исполнение неодимовых лазеров с накачкой лампой-вспышкой	164
9.3.	Лазеры на стекле	165
	Лазеры на стекле с неодимом	166
	Сравнительная характеристика лазерных веществ	167
9.4.	Эрбиевые и гольмиевые лазеры	167
	Лазеры на эрбии	167
	Лазеры на гольмии	169
9.5.	Перестраиваемые твердотельные лазеры	.170
	Лазеры на александрите	.171
	Лазеры на сапфире с титаном.	.173
	Лазеры на Уb: ИАГ	.175
	Лазеры на Yb: КГВ (калий-гадолиний-вольфрам)	.176
9.6.	Лазеры на центрах окраски	.177
	Схема энергетических уровней	.177
	Конструктивное исполнение	.179
9.7.	Лисковые и волоконные лазеры с диодной накачкой	180
	Лазеры с диодной накачкой	180
	Дисковый лазер	183
	Волоконные лазеры	183
	ЗАДАЧИ	185
Глава 10	ПОЛУПРОВОЛНИКОВЫЕ ЛАЗЕРЫ	187
10.1	Усиление света в лиолах <i>п-п-с</i> труктуры.	189
10.2	2. Лазеры на основе GaAlAs и InGaAsP	191
10.3	3. Конструктивное исполнение лиолных лазеров.	193
1010	Лвойная гетероструктура	194
	Полосковые дазеры	195
	Волноволные лазеры ребристой структуры (англ. ridge waveguide laser)	196
	Пазеры с горизонтальным резонатором и поверуностным излучением	170
	(HCSEL = aHT horizontal-cavity surface-emitting)	197
	(пеоее аны попеона саму запасе списту)	197
	Пазерные матрины и пакеты для высоких выходных мошностей	198
	Монтаж и отвол тепла у высокомошных лиолных дазеров	199
	Формирование пучка и ввол в волокнах	200
	Пазеры с потенциальной ямой и потенциальной точкой	200
10 4	1 Изпучательные свойства пиолных пазевов	202
10.	Характеристики излучения	203
10 4	5 Полетройка частоты лиолных дазеров	207
10	Частотно-зависимое усиление света в полупроволниках, теория	207
	Частотная зависимость усиления	210
	Конструктивное исполнение лиолных лазеров	210
	с полотруктивное неполнение днодных лазеров	211
	Перестраиваемые дазеры DFB (distributed feedback)	11
	или DBR (distributed Braff reflector)	212
		1 _

10.6. Диодные лазеры с вертикальным резонатором	
и поверхностным излучением (VCSEL)	. 214
10.7. Полупроводниковые лазеры для нижнего ИК-диапазона и ТГц-излучения	217
Лазеры на соли свинца.	.217
Квантовые каскадные лазеры	218
10.8. Лазеры на GaN в фиолетовой, синей и зеленой областях спектра	219
Лазеры на основе полупроволниковых соелинений А ^ш В ^{VI}	219
Лазеры на нитрилах А ^Ш В ^V	220
Области применения	. 220
10.9. Полупроволниковые дазеры для дальней связи	221
ЗАЛАЧИ	222
	222
	223
	224
	224
Изитанное излучение.	223
	227
	220
11.2. Гентгеновские и вакуумные уФ-лазеры	220
	220
Ударное электронное возоуждение	230
	232
	233
11.2. Которонски са столици о типи	233
11.3. Когерентные атомные лучи	233
	234
Глава 12. РАСПРОСТРАНЕНИЕ СВЕТОВЫХ ВОЛН	. 236
12.1. Плоские и сферические волны, дифракция	. 236
Плоские волны	. 236
Сферические волны	. 237
Ограниченные волны, дифракция	. 237
12.2. Гауссовы пучки	238
Сферические волны с мнимым центром	239
Радиусы лучей	. 240
Угол расходимости	. 241
Радиус кривизны фазовых поверхностей	. 241
Параметр q	. 242
Высшие моды Эрмита — Гаусса	. 242
Радиусы и расходимость высших мод	243
12.3. Прохождение гауссовых пучков через линзы	243
Геометрическая оптика	. 244
Преобразование гауссовых пучков	245
Фокусировка гауссова пучка	246
12.4. Телескопы и фильтры пространственных частот	246
Телескоп Кеплера	246
Зрительная труба Галилея	248
Фильтры пространственных частот	. 248

12.5. Распространение реальных лазерных лучей	249
Числовая мера дифракции М ²	250
Определение М ²	251
Определение радиусов лучей	251
Лазерные лучи с М ² > 1	252
Измерение с помощью электронной камеры	253
Измерение с подвижными диафрагмами	253
Измерение с подвижным срезом	253
Плотность энергии излучения	254
12.6. Оптические материалы	255
Ультрафиолетовая область спектра	256
Видимая область спектра	257
Инфракрасная область спектра	257
12.7. Оптические волокна	257
Моды в плоских световодах	258
Моды в стекловолокнах	259
Волокно со ступенчатым изменением показателя преломления	261
Градиентные волокна	261
Одномодовое волокно (single-mode fiber)	262
Затухание	262
Материалы для изготовления волокон	263
Фотонные кристаллические волокна	264
ЗАДАЧИ	265
Глава 13. ОПТИЧЕСКИЕ РЕЗОНАТОРЫ	267
13.1. Резонатор с плоскими зеркалами	267
Аксиальные моды	267
Потери резонатора	269
13.2. Резонатор с вогнутыми зеркалами	269
Высшие поперечные моды	271
13.3. Типы резонаторов	274
Диаграмма устойчивости	276
13.4. Неустойчивые резонаторы	277
13.5. Лазер с основной модой	278
ЗАДАЧИ	280
Γπαρα 14 3ΕΡΚΔΠΔ	281
	281
	281
Потисе отражение	283
Полнос огражение	285
14.2. Мотоллициоские зариоло	205
14.3. Пиоталлические многослойные заругата	··· 203
17.3. диэлскирические многослоиные зеркала	···· 200
Противоотражение (просветление)	··· 200
лазсрные зеркала	200
14.5. Форосопригаточние одементи	209
т.л. чазосопрягающие элементы	202
комоинация из четырех волн	293

Содержание

Индуцированное рассеяние	294
Области применения	295
ЗАДАЧИ	296
Глава 15. ПОЛЯРИЗАЦИЯ	298
15.1. Виды поляризации	298
Линейная поляризация	298
Круговая поляризация	298
Эллиптическая поляризация	299
15.2. Двойное лучепреломление	299
15.3. Поляризаторы	301
Дихроичные поляризационные фильтры	301
Поляризационные призмы	302
Брюстеровские пластинки, тонкослойные поляризаторы	303
Четвертьволновые и полуволновые пластинки	303
ЗАДАЧИ	304
Глава 16. МОЛУЛЯЦИЯ И ОТКЛОНЕНИЕ ЛУЧА	306
16.1. Механические молуляторы	306
16.2. Акустооптические молуляторы	307
Схема Брэгга	308
Бегушие и стоячие ультразвуковые волны	308
Молуляторы	309
Лефлекторы	309
Акустооптические материалы.	
16.3. Электрооптические модуляторы	
Ячейки Поккельса	
Ячейки Керра	
16.4. Оптические развязки	
Эффект Фарадея	
Фарадеевский врашатель плоскости поляризации	
16.5. Насыщающиеся поглотители	
ЗАДАЧИ	
Глава 17 ИМПУЛЬСНАЯ ГЕНЕРАЦИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ	316
17.1 Репаксационные колебания	316
17.2 Молуляция добротности	319
Электрооптические затворы	321
Прочие затворы	322
17.3 Выхол импульса (опустошение резонатора)	323
17.4. Синхронизация мол	323
Синхронизация мод в насышающемся поглотителе (пассивная)	326
Синхронизация мод и аснове столкновения импульсов (пассивная)	327
Синхронизация мод с использованием молулятора (активная)	327
Синхронная накачка (активная)	329
Синхронизация мод с помощью линзы Керра (пассивная)	329
Области применения: излучение в ТГп-лиапазоне	330
17.5. Усиление и сжатие импульсов.	330
ЗАЛАЧИ	333

Глава 18. ЧАСТОТНАЯ СЕЛЕКЦИЯ И ПОДСТРОЙКА ЧАСТОТЫ	335
18.1. Подстройка частоты	335
18.2. Селекция продольных мод	336
Спектральное выгорание провалов	336
Пространственное выгорание провалов	337
Лазеры небольшой длины для одночастотной генерации излучения	337
Лазеры с частотно-селективными элементами	337
18.3. Призма	339
18.4. Решетки	340
18.5. Эталон Фабри — Перо	341
18.6. Двоякопреломляющие фильтры	343
ЗАДАЧИ	344
Глава 19. ПРЕОБРАЗОВАНИЕ ЧАСТОТЫ	345
19.1. Эффект Доплера	345
19.2. Нелинейные оптические эффекты	346
Смешение частот.	346
19.3. Удвоение и умножение частоты	347
Кристаллы	349
Высшие гармоники	350
19.4. Параметрические усилители и генераторы	350
19.5. Вынужденное комбинационное рассеяние	352
19.6. Создание непрерывного спектра (континуума)	355
19.7. Генерация высших гармоник в газах	356
ЗАДАЧИ	359
Глава 20. СТАБИЛЬНОСТЬ И КОГЕРЕНТНОСТЬ	360
20.1. Стабильность мощности лазера	360
Стабильность направления	361
Стабильность поляризации	361
20.2. Стабильность частоты	362
Лэмбовский провал	363
Активная стабилизация	364
Фазовые флуктуации	365
20.3. Дробовой шум, «заглушенные состояния»	365
«Заглушенные состояния»	366
20.4. Когерентность	367
Временная когерентность	367
Пространственная когерентность	369
ЗАДАЧИ	370
Глава 21. ФОТОДЕТЕКТОРЫ И УСТРОЙСТВА ИЗМЕРЕНИЯ ЭНЕРГИИ	371
21.1. Основные понятия из области измерительной техники	371
21.2. Тепловые детекторы	372
Термоэлементы	372
Пироэлектрические детекторы	373
Области применения	373
21.3. Вакуумные фотодетекторы	374
Вакуумный диод	375
Фотоэлектронный умножитель	375

Содержание

Канальная плата (channel plate)	. 376
Электронно-оптический преобразователь (ЭОП)	. 376
Камера с щелевой разверткой	. 377
21.4. Полупроводниковые детекторы	. 377
Фоторезистор	. 378
Фотодиод	. 378
ПЗС-камера	. 379
Формирователь видеосигнала с КМОП-структурой	. 381
21.5. Измерение сверхкоротких световых импульсов	
с помощью автокоррелятора и техники FROG	. 381
ЗАДАЧИ	. 382
Глава 22 СПЕКТРАЛЬНЫЕ ПРИБОРЫ И ИНТЕРФЕРОМЕТРЫ	384
22.1. Призменный спектрометр	. 384
22.2. Лифракционный спектрометр	. 385
Отражательные решетки	. 386
22.3 Лвухлучевой интерферометр	386
22.3. Двуля и воон интерферологр	388
Интерференционные фильтры	389
22.5 Техника оптического гетеролинирования	389
ЗАЛАЧИ	. 390
	201
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	. 391
25.1. Передача информации по стекловолокнам	202
Дозеры иля обработки материалов	. 393
Лазеры для обработки материалов	308
23.3. Пазеры в мелицине и биофотонике	. 578
Пазерина уирургия	404
Биофотоника и мелицинская пиагностика	407
23.4. Термоялериза резклия с применением дозеров	413
Ракетное оружие на основе дазерного издучения	415
23.5. Использование дазеров в области научных исследований	415
23.5. Пенользование лазеров в области научных исследовании	416
Голографическая интерферометрия	418
23.7 Светорасседние лля измерения скорости потока	419
23.8. Пазеры в приборах и оборудовании	420
Устройства считывания штриховых колов	421
Audio-CD, CD-ROM, DVD, Blu-ray Disc	422
Лазерные принтеры	425
Лазерные пико-проекторы	426
23.9 Перспективы развития дазеров	427
Перспективы применения дазеров в научных целях	428
Перспективы использования дазеров в технике	. 429
Экономические аспекты	. 430
Резюме	431
ЗАЛАЧИ	431
1лава 24. DESUIIACHUCI D ЛАЗЕРНЫХ УСТРОИСТВ 24.1. Перекенчика консерения безерески стал.	. 433
24.1. предельные показатели оезопасности для глаз	. 434

24.2. Лазерные защитные очки	435
24.3. Классы лазеров и потенциал опасности	436
24.4. Правила техники безопасности	437
РЕШЕНИЯ ЗАЛАЧ	
Глава 1	
Глава 2	
Глава 3	
Глава 4	
Глава 5	
Глава 6	
Глава 7	
Глава 8	
Глава 9	
Глава 10	450
Глава 11	452
Глава 12	452
Глава 13	454
Глава 14	455
Глава 15	455
Глава 16	456
Глава 17	456
Глава 18	458
Глава 19	459
Глава 20	461
Глава 21	461
Глава 22	461
Глава 23	462
Дополнение 1. ОСОБЕННОСТИ ГАЗООБЕСПЕЧЕНИЯ ЛАЗЕРНЫХ КО	ЭМПЛЕКСОВ.
ТЕХНИЧЕСКИЕ РЕШЕНИЯ КОМПАНИИ «ЛИНДЕ ГАЗ РУС»	463
Резонаторные газы	463
Состав газов для лазеров	463
Чистота газов для лазеров	464
Соединители для трубной разводки	466
Рабочие газы	467
Дополнение 2. СОВРЕМЕННЫЕ ПРОМЫШЛЕННЫЕ ЛАЗЕРНЫЕ	
ТЕХНОЛОГИИ И ТЕХНИКО-ЭКОНОМИЧЕСКИЕ АСПЕКТЫ	
ИХ ВНЕДРЕНИЯ В ПРОМЫШЛЕННОСТИ	473
Введение	473
Заключение	488
Литература	489
Предметный указатель	490

ПРЕДИСЛОВИЕ К 7-му ИЗДАНИЮ

Летом 2010 г. отмечалась 50-летняя годовщина демонстрации действия первого лазера. В 1960 г. от Теодора Г. Мэймана из Hughes Research Laboratories, Калифорния, и ученых из Bell Laboratories, Нью-Джерси, поступили сообщения о получении синтезированного светового излучения и генерации красного лазерного луча с помощью рубинового стержня, возбуждаемого лампой-вспышкой. Известно, что изобретение лазера опирается на теоретические разработки ученых Басова и Прохорова, СССР, а также Шавлова и Таунса, США, получивших за это в 1964 г. Нобелевскую премию. Позднее Л. Голдман, США, запатентовал оригинальные предложения касательно конструктивного исполнения соответствующих устройств, окончательно введя в оборот собственно термин «лазер».

Германия тоже не осталась в стороне от интересных разработок в этой области. Еще в 1917 г. А. Эйнштейн использовал понятие вынужденного индуцированного (или стимулированного) излучения для описания равновесного излучения, а Ладенбург и Копферманн в 1928 г. впервые наблюдали инверсию населенностей в газах как условие усиления света.

В течение десятилетий, последовавших за 1960 годом, появилось множество разных лазерных систем самого широкого назначения. Десятки тысяч инженеров и исследователей активно участвовали в соответствующих разработках. В настоящее время лазеры играют важнейшую роль в сфере научных и технических измерений, информационных технологий, в области обработки материалов и в медицине. В данной книге дается обзор наиболее распространенных типов лазеров с описанием их многочисленных применений.

В главах 1 и 2 рассматриваются основы лазерной оптики, анализируются конструктивные исполнения лазеров и приводятся характеристики лазерных материалов. Прежде всего, речь идет о газовых лазерах с излучением света атомами, ионами или молекулами. Лазеры, генерирующие в нейтральных атомах, действуют преимущественно в видимой области спектра, как и ионные лазеры, но последние, подобно молекулярным ультрафиолетовым установкам с электронными переходами, способны функционировать также в УФ-областях спектра. Молекулярные инфракрасные лазеры характеризуются низкими частотами излучения, но, как и лазеры на углекислом газе, генерируют излучение очень высокой мощности. Газовые лазеры представлены в самых разных исполнениях и достаточно подробно описаны в четырех разделах. Далее следуют лазеры на красителях — с переходами в молекулах, растворенных в жидкостях.

Прочим не менее важным типам — твердотельным, полупроводниковым, электронно-лучевым и рентгеновским лазерам — посвящены главы 8—11. Порядок рассмотрения здесь примерно соответствует последовательности разработок и совершенствования лазерных систем. При описании определенных лазерных установок делается краткая ссылка на наиболее типичные области их применения. Все большее значение приобретают сейчас представленные в главе 10 полупроводниковые диодные лазеры, которые заметно прогрессируют в последние годы.

В главах 13—16 описываются оптические компоненты лазерных конструкций: зеркала, поляризаторы, модуляторы, обеспечивающие разные режимы генерации, среди которых особый интерес представляет импульсная генерация

лазерного излучения. Здесь же обсуждаются конструктивные особенности узкополосных лазеров, стабильных по частоте, и ряда перестраиваемых лазерных систем. В этой связи излагаются некоторые проблемы внешнего преобразования частоты на основе нелинейных оптических эффектов. Кроме того, рассматривается оборудование, разработанное для анализа лазерного излучения, как то: фотодетекторы, измерители энергии, спектрометры и устройства для определения когерентности.

В заключение читатель имеет возможность ознакомиться с наиболее важными областями применения лазерных установок и перспективами их дальнейшего развития. Предлагается, далее, достаточно обширный, хотя и далеко не полный, список дополнительной специальной литературы. При этом нетрудно заметить, что современных монографий по лазерам на немецком языке не так уж много: это послужит еще одним поводом внимательно изучить предлагаемую книгу.

В основу настоящего издания положен преимущественно цикл лекций, прочитанных авторами в ряде технических вузов Берлина. Были исключены лишь некоторые теоретические выкладки, что позволило создать обзорный труд с упором на практический аспект. Для понимания содержания книги, в принципе, достаточно знания математики на уровне средней школы. Таким образом, предлагаемый материал может использоваться не только студентами высших учебных заведений, но также техническим персоналом, учителями и школьниками выпускных классов. Упражнения и задачи, приводимые по ходу обсуждения конкретных тем и сопровождаемые ответами и решениями в конце книги, призваны помочь усвоить новую информацию и закрепить ранее приобретенные знания.

Авторы признательны проф. Х. Веберу и проф. Г. Герцигеру за их ценные советы и указания касательно предыдущих изданий. Мы благодарим также проф. К. Й. Зигриста из ЕТН, Цюрих, за предоставленный иллюстрационный материал.

Прочая наглядная информация была любезно предложена коллегами и фирмами, указанными в подрисуночных подписях. Огромную помощь в подготовке 7-го издания оказали также д-р П. Пензер, фирма Даймлер-Бенц, Оттобрунн, проф. Ф. Краусц из Венского Технического университета (теперь в Мюнхене), проф. В. Занднер из Института Макса-Борна в Берлине, проф. Х. Вебер из Института Генриха Гертца, Ф. Цгода из Технологической лаборатории лазерной медицины в Берлине и, наконец, наши сотрудники: г-жа К. Шарфенорт, д-р З. Майстер, д-р К. Тайсс, а также дипломированные физики К. Зовойднич и О. Люкс.

> Берлин, весна 2010 г. Г.-И. Айхлер, Ю. Айхлер

ГЛАВА 1

СВЕТ, АТОМЫ, МОЛЕКУЛЫ, ТВЕРДЫЕ ТЕЛА

Со времени экспериментальной реализации первых лазерных систем — рубинового лазера в 1960 году и гелий-неонового лазера в 1961 году — появилось огромное число других разнообразных установок. Остановимся для начала на общих физических аспектах лазерной техники с последующим описанием конструктивного исполнения важнейших типов лазеров — газовых, на красителях, твердотельных и полупроводниковых. В завершение будут рассмотрены относящиеся сюда электрооптические конструкционные элементы. От традиционных источников света (ламп накаливания и газоразрядных ламп) лазеры отличаются остронаправленным излучением (= малая угловая дивергенция), умеренной шириной спектральных линий (= монохроматичность, когерентность), высокой интенсивностью и способностью генерировать короткие импульсы. Этим и объясняется их успешное применение в самых разных областях: в измерительной технике, голографии, медицине, обработке материалов и передаче информации.

Следующий раздел посвящен рассмотрению основ, необходимых для понимания такого явления, как лазерное излучение, и описанию свойств света и энергетических состояний атомов, молекул и твердых тел, используемых при генерации лазерного излучения.

1.1. Свойства видимого излучения

Для описания свойств света привлекают в большинстве случаев упрощенные модели, ибо в первом приближении необходимо понять, как именно испускают свои лучи источники света, будь то солнце или лазер. Световые лучи, согласно квантовой теории, могут восприниматься как прямолинейные траектории частиц света, или фотонов, исходящих от источников видимого излучения. Но если попытаться, пользуясь точечной диафрагмой, получить резко ограниченный луч, то позади диафрагмы будут отмечены явления дифракции (к ним мы еще вернемся ниже), вызывающие расходимость пучка относительно диаметра отверстия. Поэтому резкий световой луч создать не удается. Это объясняется волновой моделью света. В принципе, корпускулярная и волновая модели могут быть объединены на уровне унифицированного теоретического описания, которое, однако, требует достаточно глубоких математических знаний, поэтому здесь мы от него откажемся. Для объяснения многих интересующих нас явлений вполне достаточно только волновой либо только корпускулярной модели — опыт покажет, какая из них наиболее приемлема в том или ином случае. Так, для понимания поглощения и излучения света лучше прибегнуть к изображению частиц, а для описания распространения света и явлений интерференции можно привлечь волновое поле.

Световые волны, электромагнитное излучение

Волновая оптика описывает видимое излучение как поперечную электромагнитную волну, в которой периодически и с равной частотой f возбуждается напряженность электрического поля E и связанная с ним напряженность магнитного поля H. Векторы E, H и направление распространения всегда взаимно ортогональны. На рис 1.1 представлены напряженности поля в определенный момент времени в зависимости от координаты места в направлении распространения.

Рис. 1.1. Напряженность электрического (*E*) и магнитного (*H*) полей в световой волне в фиксированный момент времени. Волна распространяется в направлении z. Расстояние до источника света принимается как «дальнее» (поле в дальней зоне)

Чтобы получить представление о пространственном распространении световых волн, рассматриваются их фазовые поверхности, или плоскости — например, места максимальных напряженностей поля. Интервал между двумя соседними фазовыми поверхностями составляет длину волны. При плоской волне это будут параллельные фазовые поверхности, при сферической волне — концентрическисферические. Линии пересечения данных фазовых поверхностей с плоскостью показывает рис. 1.2. Четко ограниченные «вырезы» волн обозначаются как световые лучи, направленные перпендикулярно фазовым поверхностям, которые называют также волновыми фронтами.

Между частотой f, длиной волны λ и скоростью распространения c существует следующая зависимость:

$$c = \lambda \cdot f. \tag{1.1}$$

В вакууме скорость света составляет $c = 2,998 \cdot 10^8$ м/с. Значение, обратное длине волны, а именно $1/\lambda$, пропорционально частоте и именуется волновым числом с единицей измерения: см⁻¹. Тема распространения световых волн более подробно обсуждается в гл. 12.

Для большинства оптических явлений достаточно рассмотрения напряженности электрического поля. Напряженность поля световой волны не поддается прямому измерению. Вместо этого можно определять интенсивность либо плотность мощности *I*, выражаемую через временное среднее значение квадрата амплитуды напряженности поля *E*:

Рис. 1.2. Линии пересечения фазовых поверхностей плоских и сферических волн с плоскотью, содержащей направление распространения: упрощенное представление реальных световых волн

$$I = \sqrt{\varepsilon \varepsilon_0 / \mu \mu_0} \ \overline{E^2}, \tag{1.2}$$

где: $\varepsilon_0 = 8,858 \cdot 10^{-12} \text{ A} \cdot \text{c/B} \cdot \text{м}$, ε — относительная диэлектрическая проницаемость, $\mu_0 = 4\pi \cdot 10^{-7} \text{ B} \cdot \text{c/A} \cdot \text{м}$, μ — относительная магнитная проницаемость. Горизонтальная черточка над E^2 символизирует значение, осредненное по времени. Единицей измерения напряженности электрического поля является В/м, а единицей измерения плотности мощности служит Вт/м². Коэффициент пропорциональности $Z = \sqrt{\mu\mu_0 / \varepsilon\varepsilon_0}$ обладает размерностью сопротивления и обозначается поэтому как «волновое сопротивление». Для вакуума и воздуха ($\varepsilon = 1$, $\mu = 1$) имеет силу: $Z = 377 \text{ B/A} = 377 \Omega$.

В прозрачной среде свет распространяется медленнее, чем в вакууме. Скорость света c' в такой среде указывается через c' = c/n. Постоянная вещества *n* именуется показателем преломления и выражается через относительную диэлектрическую проницаемость ε и магнитную проницаемость μ :

$$n = \sqrt{\varepsilon \mu}.$$
 (1.3)

При попадании света на границу раздела между двумя оптическими средами с показателями преломления *n*₁ и *n*₂ в отношении угла падения и угла отражения α₁ и, соответственно, α, действует известный закон преломления:

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2. \tag{1.4}$$

Интенсивность, или плотность мощности I, показывает обеспечиваемую световой волной мощность на единицу поверхности. В светотехнике вместо термина «интенсивность» используются понятия «освещенность» и «плотность облучения» (см. гл. 21). Поскольку световые волны распространяются со скоростью света c, можно плотность мощности связать с плотностью энергии ρ (энергия/объем), а именно таким образом:

$$I = \rho c. \tag{1.5}$$

Плотность мощности *I* показывает идущую от волны энергию, проходящую в единицу времени через единицу поверхности (мощность/площадь).

Фотоны

Согласно квантовой теории свет демонстрирует как свойства волн, так и свойства частиц. На такую двойственность указывают и экспериментальные наблюдения. В корпускулярном описании свет состоит из квантов, или фотонов с энергией *W*, движущихся со световой скоростью *c*:

$$W = hf = hc/\lambda. \tag{1.6}$$

Здесь $h = 6,626 \cdot 10^{-34}$ Дж сек есть постоянная Планка, f — частота, λ — длина световой волны. В ядерной физике и физике лазера энергия фотона часто указывается не в джоулях, а в электрон-вольтах (эВ), причем 1 эВ показывает энергию (W = eU, e = 1,602 A · сек), генерируемую электроном при ускорении его напряжением в 1 вольт (В). То есть:

1 эВ = 1,602 · 10⁻¹⁹ Дж,
$$W = 1,24$$
 эВ мкм/ λ .

Плотность энергии ρ в световой волне выражается через плотность фотонов Φ (фотонов/объем), а плотность мощности *I* — через плотность потока фотонов ϕ (фотонов/время площадь):

$$\rho = hf \cdot \Phi,$$

$$I = hf \cdot \phi.$$
(1.7)

Поляризация

Если напряженность электрического поля E всегда имеет одно и то же направление, то световая волна обозначается как линейно-поляризованная, а направление напряженности поля E — как направление поляризации света. Подробное описание свойств поляризации света приводится в гл. 15. Свет большинства источников (солнца, ламп накаливания, газоразрядных ламп) не поляризован и может трактоваться как статистическая смесь волн со всеми возможными направлениями поляризации.

Цвет видимого излучения

Видимый свет бывает разного цвета, причем эти цвета могут различаться по частоте или длине волн. Человеческий глаз воспринимает длины световых волн с разной степенью чувствительности, как это отчетливо видно на рис. 1.3. К видимому диапазону в коротковолновой области примыкает ультрафиолетовый (УФ)диапазон, а в длинноволновой — инфракрасный (ИК)-диапазон (см. табл. 1.1 и 1.2). Солнечный спектр имеет свой максимум в видимой области и примерно соответствует излучению черного тела с температурой 6000 К (рис. 1.4).

Таблица 1.1. Длины волн (λ), частота (f) и энергия фотонов (hf) электромагнитного излучения. Указанные области спектра четко не выделены, численные значения являются ориентировочными (1 эВ = 1,602 · 10⁻¹⁹ Дж)

	Λ	f	hf
Гамма-излучение	до 500 пм	6 · 1018 Гц	24,8 кэВ
Рентгеновское излучение	до 50 нм	6·10 ¹⁵ Гц	24,8 эВ
Ультрафиолетовое излучение	до 400 нм	7,5 · 1014 Гц	3,1 эВ
Видимое излучение	до 700 нм	4,3 · 10¹⁴ Гц	1,77 эВ
Инфракрасное излучение	до 100 мкм	3·10 ¹² Гц	12,4 мэВ
Микроволны (СВЧ)	до 1 см	3·10 ¹⁰ Гц	124 мкэВ
Радиоволны	до 1 км	3 · 10 ⁵ Гц	1,24 нэВ

Таблица 1.2.	Принятые обоз	начения, д	цлины волн,	частота и	энергия
фотонов в	диапазоне лазер	ного излу	чения		

Обозначение (по ДИН 5031)		λ (нм)	f (1014 Гц)	hf (эB)
UV-C	Вакуумный УФ-диапазон	100-200	30-15	12,4-6,2
UV-C	Дальний УФ-диапазон	200-280	15-10,7	6,2—4,4
UV-B	Средний УФ-диапазон	280-315	10,7—9,5	4,4-3,9
UV-A	Ближний УФ-диапазон	315-380	9,5-7,9	3,9-3,3
VIS	Свет (видимое излучение)	380-780	7,9—3,9	3,3-1,6
IR-A	Ближний ИК-диапазон	780—1400	3,9-2,1	1,6-0,9
IR-B	Ближний ИК-диапазон	1400-3000	2,1-1,0	0,9—0,4
IR-C	Средний ИК-диапазон	3000-50000	1,0-0,06	0,4-0,025
IR-C	Дальний ИК-диапазон	50000—1 мм	0,0-0,003	0,025-0,001

1.2. Атомы: орбиты электронов, уровни энергии

Простейшим атомом является атом водорода, который состоит из положительно заряженного ядра (протона) и отрицательно заряженного электрона, связанного с ядром благодаря напряженности электрического поля (кулоновское взаимодействие). По представлению Бора, электрон движется по круговой орбите вокруг ядра, причем имеют место только определенные радиусы искривления (кривизны) траектории (рис. 1.5), соответствующие определенным орбитальным энергиям E_n . Разрешенная энергия вычисляется на основе главного (первого) квантового числа *n*:

$$E_n = -E_i/n^2 \quad n = 1, 2, 3, \dots,$$
(1.8)

где E_i отображает энергию ионизации. Для атома водорода действительно: $E_i = 13,6$ эВ. Величины энергии E_n (именуемые также энергетическими уровнями, или термами) могут быть представлены в схеме уровней, как это показано на рис. 1.6. Отрицательный знак означает, что внутренние орбиты обладают меньшей энергией, чем внешние. Следовательно, приходится подводить соответствующую энергию, чтобы поднять электрон с внутренней

орбиты на внешнюю либо совсем удалить от атомного ядра или ионизировать. К главному квантовому числу n = 1 относится орбита с наименьшим радиусом и с величиной энергии $E_1 = -E_i = -13,6$ эВ. Это то основное состояние, в котором обычно находится атом водорода. Если к атому водорода подвести энергию снаружи, он может перейти в возбужденное состояние. Когда подведенная энергия достигает уровня энергии ионизации $E_i = 13,6$ эВ или выше, система переходит в ионизированное состояние. Электрон больше не движется по замкнутой траектории и уже не связан с атомом.

Рис. 1.5. Орбиты электронов атома водорода с радиусами $r_n = 0.53 \cdot 10^{-10} \cdot n^2$ метров

Рис. 1.6. Схема энергетических уровней атома водорода с главным квантовым числом n = 1, 2, 3 и орбитальным квантовым числом l = s, p, d, f..., то есть l = 0, 1, 2, 3,...

Известная модель атома по Бору получила свое дальнейшее развитие на основе квантовой механики. Согласно этой теории состояние электрона характеризу-

ется не определенной орбитой, а волновой функцией ψ, или пространственным распределением вероятности пребывания (орбитальное электронное облако, рис. 1.7), что выражается четырьмя квантовыми числами (см. табл. 1.3).

Рис. 1.7. Два примера пространственного распределения вероятности пребывания $|\psi|^2$ электронов в атоме водорода с n = 2 (прочие квантовые числа см. в табл. 1.3). Эти распределения вращательно-симметричны относительно оси *z*. Представленные кривые демонстрируют постоянные значения $|\psi|^2$

Квантовое число	Возможные величины	Физическое значение
Главное	1,2,3,	Важнейший показатель энергии состоя-
квантовое число <i>п</i>	= K, L, M-оболочка	ния (при многоэлектронных атомах энер-
		гия зависит также от других квантовых
		чисел).
Орбитальное	0,1,2,3,(n-1)	Основа определения орбитального ра-
квантовое число <i>l</i>	<i>= s, p, d, f (n</i> значе-	диуса.
	ний)	Определяет вращательный импульс со-
		стояния; показывает форму электронно-
		го облака, которое в случае <i>l</i> ≠ 0 не явля-
		ется сферически-симметричным.
Магнитное	$-l \leq m_1 \leq l$	Определяет величину вращательного
квантовое число <i>т</i> ₁	(2 <i>l</i> + 1 значений)	импульса относительно постоянного на-
		правления в пространстве (например,
		магнитного поля) и указывает ориента-
		цию атома в пространстве.
Спиновое	$m_{\rm s} = -1/2, +1/2$	Показывает значение спина электрона
квантовое число <i>m</i> _s	(2 значения)	относительно постоянного направления
3		в пространстве.

Таблица 1.3. Квантовые числа электронных состояний в атоме водорода и состояний отдельных электронов в многоэлектронных атомах

Для лазерной техники появление света в атомах, молекулах и твердых телах имеет огромное значение. Свет возникает благодаря переходу электронов с вышележащего энергетического уровня на нижележащий уровень. Для атома водорода такие переходы показаны на рис. 1.5. При этом образуются спектральные линии, характерные для того или иного атома. Описание собственно процесса генерации света см. в гл. 2.

1.3. Многоэлектронные атомы

Атомы состоят из положительного ядра и электронной оболочки, в которой находятся в большинстве случаев несколько электронов. Заряд атомного ядра (атомный номер) равен числу электронов, так что атом обычно является электрически нейтральным. Каждый электрон движется в электрическом (кулоновском) поле атомного ядра, которое частично экранируется другими электронами. В модели центрального поля любое состояние электрона может приближенно (как в атоме водорода) характеризоваться определенным электронным облаком с набором из четырех квантовых чисел (n, l, m_i , m_s) согласно табл. 1.3. По принципу Паули каждый электрон атома должен отличаться от других электронов как минимум одним из четырех квантовых чисел.

При строении атома заполняются сначала состояния с наименьшей энергией — как правило, с самыми низкими главным и орбитальным квантовыми числами. Состояния с одинаковым главным квантовым числом n считаются принадлежащими к одной оболочке. Согласно принципу Паули каждая оболочка способна вместить $2n^2$ электронов. При рассмотрении в периодической системе элементов атомы с возрастающим числом электронов обнаруживают отдельные оболочки с последовательным заполнением (рис. 1.8). При порядковых номерах элементов выше 18 отмечаются неравномерности в структуре электронной оболочки периодической системы. Особенно отчетливо это проявляется в случае редкоземельных элементов, у которых незаполненные внутренние оболочки занимают электроны.

Рис. 1.8. Строение атомов периодической системы путем заполнения оболочек электронами

Энергия электрона у атомов тяжелее водорода определяется уже не только одним главным квантовым числом n, но еще и орбитальным квантовым числом l. Как видно из табл. 1.3, l может иметь n значений. Соответственно, оболочки разделяются на n частей (n подоболочек), каждая из которых содержит 2 (2l+1) позиций, выраженных через возможные значения квантовых чисел m_1, m_s . Распределение электронов по разным частям оболочки называется электронной конфигурацией, для которой принимается следующее обозначение:

$$n_1 l_1^{a_1}, n_2 l_2^{a_2}, \dots$$

Верхний индекс a_i показывает число электронов в отдельной части оболочки, определяемое на основе главного и орбитального квантовых чисел n, l. В обозначениях конфигурации l = 0, 1, 2, 3 цифры обычно заменяются буквами s, p, d, f (например, основное состояние неона имеет вид: $1s^22s^22p^6$).

Связь электронов

Наряду с притяжением электронов к атомному ядру имеет место еще и кулоновское отталкивание отдельных электронов. Кроме того, происходит спинорбитальное взаимодействие, причем магнитные моменты орбитальных моментов количества движения воздействуют на собственные магнитные моменты электронов. Это приводит к тому, что энергетические уровни также зависят от *m*₁ и *m*_s (расщепление уровней энергии). В зависимости от относительного размера кулоновского и спин-орбитального взаимодействия моменты количества движения отдельных электронов комбинируются (или «связываются») по-разному. При этом принимаются во внимание, в частности, три предельных случая:

- LS-связь (Рассела Саундерса) имеет место, когда кулоновское взаимодействие велико по сравнению со спин-орбитальным взаимодействием. В этом случае отдельные спины сначала соединяются в полный спин S, а отдельные орбитальные моменты — в полный орбитальный момент количества движения L. В результате спин-орбитального взаимодействия L и S составляют вектор полного орбитального момента J. Абсолютные величины результирующих моментов количества движения описываются на основе квантовых чисел S, L и J (L = 0, 1, 2,... = S, P, D,...). Показанная связь Рассела — Саундерса хорошо подходит для легких элементов и, кроме того, используется (на приближенном уровне) для большого числа других элементов;
- jj-связь имеет место, когда спин-орбитальное взаимодействие велико по сравнению с кулоновским взаимодействием. При этом спины и орбитальные моменты отдельных электронов соединяются сначала в результирующий орбитальный момент количества движения, а затем составляют полный орбитальный момент атома. Такая связь предназначена преимущественно для тяжелых атомов;
- 3) *jl*-связь имеет место, когда кулоновское взаимодействие больше спинорбитального взаимодействия у внутренних электронов, но меньше такового у самого крайнего электрона. Такая связь особенно важна при описании спектров тяжелых инертных газов, например, ксенона.

Помимо рассмотренных выше квантовых чисел вводится такое понятие, как четность *P*, весьма значимое для всех типов связи. Четность может принимать значения $P = \pm 1$ и описывает симметрию волновой функции относительно зеркального отражения. Четность формируется на основе орбитального момента количества движения электронов в отдельных оболочках. Если Σl_i имеет нечетное значение, то P = -1 и, соответственно, P = +1 будет для четной суммы. Состояния нечетности (англ. odd) отмечаются верхним «о» в обозначении связи LS (Рассела — Саундерса).

Таблица 1.4. Примеры применения правил отбора при поглощении
и излучении света (электрическое дипольное излучение) атомами и ионами

Правила отбора	Критерий	
$\Delta J = 0, \pm 1$ но: $J_{\text{начало}} = 0 \rightarrow J_{\text{конец}} = 0$ запрещено	Фотон имеет момент количества движения $h/2\pi$ (при дипольном излучении), поэтому требуется изменение <i>J</i> или ориентации <i>J</i>	
Σl_i четн. $\leftrightarrow \Sigma l_i$ нечетн., то есть нет пере- хода между уровнями одинаковой чет- ности	Фотон нечетный, четность есть мульти- пликативное квантовое число	
Только в случае <i>LS</i> -связи действительно: $\Delta L = 0, \pm 1$, но: $L_{\text{начало}} = 0 \rightarrow L_{\text{конец}} = 0$ за-прещено	Вытекает из $\Delta L = 0, \pm 1$ и интеркомбинаци- онного запрета	
$\Delta S = 0.$ «Интеркомбинационный за- прет», то есть запрещены переходы меж- ду уровнями разной мультиплетности	Отсутствует магнитное действие фотона	

Правила отбора

Атом может изменять свое энергетическое состояние путем поглощения и излучения света. Разрешенный переход возможен, если возникающие при этом изменения квантовых чисел подчиняются правилам отбора, приведенным в табл. 1.4. Переходы, исключающиеся правилами отбора, именуют запрещенными переходами. Они являются долгоживущими либо метастабильными. Подробнее о поглощении и излучении света см. в гл. 2.

1.4. Молекулы

Молекулы состоят из нескольких атомных ядер и одной электронной оболочки, причем отдельные электроны могут быть отнесены к определенному ядру атома или равномерно распределяются по всей молекулярной зоне. Энергетические состояния молекул, как и в случае атомов, выражаются через электронные возбуждения, но дополнительно возникает еще энергия колебаний и вращений.

Электронные состояния

Молекулы образуются в результате взаимодействия сил связи электронов и силы кулоновского отталкивания атомных ядер. Рассмотрим теперь химическую связь молекул на основе системы двух атомов, например, Н и Cl. Эти атомы взаимно притягиваются, образуя молекулу HCl, причем между ними устанавливается определенное расстояние (межъядерный интервал) r_0 (рис. 1.9а). При уменьшении этого расстояния атомы отталкиваются, при его увеличении — притягиваются.

Кривая потенциала X на рис. 1.9а отображает энергию взаимодействия (потенциальную энергию) двухатомной молекулы в зависимости от межъядерного интервала r. Эта характеристика демонстрирует свой минимум при r_0 . Для разрушения молекулярной связи необходимо соответствующим образом разделить атомы, а для этого требуется энергия связи $E_{\rm B}$, показывающая глубину так называемой потенциальной ямы. Кривая X относится к основному состоянию

электронов. Точно так же, как и в случае атомов, электроны могут возбуждаться с переходом на более высокие орбиты. Тогда при повышенных энергиях получаются другие кривые потенциала. Когда молекула переводится из основного состояния в возбужденные состояния, изменяется межъядерный интервал (r_1 , r_2 , r_3 и т.д.) и, соответственно, энергия связи.

Рис. 1.9. (а) Кривая потенциала Х дает схематическое представление потенциальной энергии молекулы в основном состоянии в зависимости от межъядерного интервала. Энергия связи составляет E_в. Кривые потенциала электронно-возбужденных состояний обозначены как А, В, Сит.д. (б) Колебательные уровни имеют обозначения υ = 0, 1, 2,..., на них отображены пространственные распределения вероятности пребывания *W*v. Переходы осуществляются преимущественно без изменения радиуса ядра между колебательными состояниями с максимальными значениями W

В качестве условных обозначений используются: X для электронного основного состояния, A, B... для возбужденных состояний. Квантовые числа двухатомных молекул λ , Λ , Σ и т. д. приведены в табл. 1.5. При переходах электронов с вышележащего уровня на нижележащий электронный уровень возникает излучение, чаще всего находящееся в ультрафиолетовой области спектра. Упомянутые выше правила отбора наглядно представлены в табл. 1.6.

Квантовое число	Величины	Физическое значение
λ	$0, 1, 2, = \sigma, \pi$	Составляющая орбитального момента коли- чества движения электрона в направлении оси молекулы
Λ	$0, 1, 2, = \Sigma, \Pi, \Delta$	Составляющая полного орбитального момента в направлении оси молекулы
Σ		Составляющая полного спина в направлении оси молекулы
$2\Sigma + 1$	0, 1, 2,	Мультиплетность, добавляемая в качестве верх- него индекса орбитального квантового числа
Р	g, u +, _	Четность, симметрия относительно зеркального пространственного отражения. Симметрия от- носительно плоскости, проходящей через ось молекулы
υ	0, 1, 2,	Колебательное квантовое число
J	0, 1, 2,	Вращательное квантовое число

Таблица 1.5. Квантовые числа двухатомных молекул

Таблица 1.6. Правила отбора при поглощении и излучении света молекулами (электрическое дипольное излучение)

Правила отбора	Примечания
$\Delta \Lambda = 0, \pm 1$	Действительно для двухатомных молекул.
$\Delta \upsilon = \pm 1$	Действительно для переходов в одинаковом электронном состоянии.
$\Delta \upsilon = 0, \pm 1, \dots$	Действительно для электронных переходов. Межъядерный интервал при этом не изменяется (см. рис. 1.96). Если кривые потенциальной энергии подобны (нет изменения межъядерного интервала), то пред- почитается Δυ = 0. При смещенных кривых X и A изменяется υ.
$\Delta J = 0, \pm 1$	$\Delta J = 0$ действительно только при электронных переходах. В одинаковом электронном состоянии имеет силу $\Delta J = 1$ (<i>R</i> -ветвь) либо $\Delta J = -1$ (<i>P</i> -ветвь).

Колебания и вращения

Наряду с электронной энергией молекулы в результате движения ядра появляются две энергетических составляющих. Во-первых, атомы в молекуле могут колебаться относительно своего равновесного положения, и, во-вторых, сама молекула может вращаться вокруг основных инерциальных осей. При этом общая

энергия молекулы складывается из электронной энергии, колебательной энергии и вращательной энергии.

Электронная энергия E_e составляет от 1 до 20 эВ, колебательная энергия $E_v =$ от 0,5 до 10⁻² эВ, в то время как вращательная энергия E_J будет менее $\approx 10^{-2}$ эВ. Схема уровней молекулы, таким образом, несколько сложнее схемы уровней атомов. Как видно из рис. 1.10 (и рис. 1.96), к каждому электронному уровню *X*, *A*, *B*, *C*,... относится несколько эквидистантных колебательных уровней, над которыми создаются затем вращательные уровни.

Колебательная и вращательная энергия квантуется так же, как электронная энергия. Колебательный и вращательный уровни обозначаются посредством квантовых чисел $\upsilon = 0, 1, 2, 3, ...$ и J = 0, 1, 2, 3, ... (не путать с полным орбитальным моментом!):

$$E_{v} = (v + \frac{1}{2}) hf$$
 (1.10)

$$E_J = hcB_r J (J+1), \tag{1.11}$$

где: $h = 6,626 \cdot 10^{-34} \, \text{Дж} \cdot \text{сек}$ есть постоянная Планка, f — частота кванта колебания молекулы, $c = 3 \cdot 10^8 \, \text{м/c}$ — скорость света и B_r — постоянная вращения.

Молекулы могут возбуждаться в разные вращательно-колебательные уровни (рис. 1.9б) с последующим переходом в нижележащие уровни, причем происходит излучение. Здесь возможны многочисленные переходы между разными уровнями — электронными, вращательными или колебательными, а длина волны возникающего излучения находится в ультрафиолетовой, инфракрасной областях спектра или в дальнем ИК-диапазоне. Правила отбора при поглощении и излучении представлены в приведенной выше табл. 1.6.

Многоатомные молекулы обнаруживают разные формы колебаний. Это можно объяснить на примере линейной, симметричной, трехатомной молекулы CO₂ (рис. 1.11). Для молекулы CO₂ возможны три основных формы колебаний: симметричное продольное колебание с частотой f_1 , изгибное колебание с частотой $f_2 = f_{2a}$, f_{2b} и асимметричное продольное колебание с частотой f_3 . Каждое коле-

бание является квантованным и способно существовать независимо от других форм колебаний. Для обозначения колебательного уровня требуются три числа (v_1, v_2, v_3) . Изгибные колебания f_{2a} и f_{2b} в плоскости чертежа и перпендикулярно ей равнозначны, так что колебание с f_2 относят к вырожденным. Степень вырождения указывается с помощью верхнего индекса $l(v_1, v'_2, v_3) -$ см. здесь также п. 6.2.

Рис. 1.11. Разнотипные основные колебания молекулы CO₂

Описанные в данном разделе относительно простые молекулы с небольшим числом атомов находят применение в газовых инфракрасных и ультрафиолетовых лазерах (см. гл. 6 и 7). Дополнительное значение именно для лазерной техники имеют молекулы красителей, состоящие из значительно большего числа атомов. Эти сложные молекулы подробно описаны в разделе «Лазеры на красителях».

1.5. Энергетические уровни в твердотельных лазерах

Твердые тела состоят из большого числа атомов, упорядоченных в кристаллах. В результате взаимодействия атомов друг с другом в твердых телах, состоящих из дискретных уровней свободных атомов, возникают неразрывные энергетические зоны. Особую важность с точки зрения электрических и оптических свойств представляют две самых верхних, полностью или частично заполненных, зоны. В частично заселенных зонах электроны способны двигаться под действием электрических полей и проводят, таким образом, электрический ток. В случае полностью заселенных зон это невозможно.

Итак, можно принять грубую классификацию твердых тел на основе их электропроводности. У металлов самая верхняя энергетическая зона, так называемая зона проводимости, заселена лишь частично, так что имеет место высокая проводимость. Подобная электропроводность связана с сильным оптическим поглощением, поэтому металлы не пригодны для генерации лазерного излучения.

У изоляторов зона проводимости остается свободной, что исключает протекание тока. Расстояние до следующей нижележащей, так называемой валентной зоны настолько велико, что никакого поглощения в видимой области спектра быть не может. Поэтому изоляторы, как и стекло, керамика, кристаллы, в чистом виде прозрачны.

Полупроводники

Полупроводники занимают промежуточное положение между металлами и изоляторами. При низких температурах или в абсолютно чистых веществах также отсутствует электропроводность. Зона проводимости не заселена, в то время как нижележащая валентная зона вся заполнена. Ширина запрещенной зоны между этими двумя зонами, например, в случае кремния составляет 1,2 эВ, а у GaAs 1,5 эВ. Данная энергия может подводиться путем повышения температуры или облучения светом, так что полупроводник приобретает электрическую проводимость. Кроме того, в результате легирования в зоне проводимости могут генерироваться электроны. Энергетические зоны и процессы поглощения и излучения света обсуждаются также в п. 1.6 и гл. 10.

Примесные атомы в изоляторах

Неупорядоченности, или встроенные примесные атомы образуют дефекты кристаллической решетки твердых тел. Электроны, привязанные к таким примесным центрам, обладают характерными энергетическими состояниями, определяемыми имеющимися дефектами и влиянием окружающей кристаллической решетки.

У твердотельных лазеров кристаллы или стекла легируются примесными атомами, у которых имеются незаполненные внутренние оболочки. Речь идет здесь о переходных металлах типа Cr, Co, Ni или атомах редкоземельных элементов, например, Nd, Ho, Er. Оптические переходы осуществляются во внутренних оболочках этих атомов, относительно хорошо экранированных внешними оболочками от влияния кристаллической решетки.

Примером энергетических уровней, формируемых примесными атомами в кристалле, являются состояния ионов хрома в кристалле рубина. У лазера на рубиновом стержне такой кристалл состоит из окиси алюминия (a-Al₂O₃, корунд) с добавлением примерно 0,05 % хрома (п. 9.1). В структуре решетки корунда некоторые ионы Al³⁺ заменяются ионами Cr³⁺. Влияние электростатического внутрикристаллического поля на ионы Cr³⁺ по своей эффективности меньше кулоновского взаимодействия электронов в атоме. Влияние внутрикристаллического поля на энергетические уровни ионов Cr³⁺ показано на рис. 1.12. Слева представлена вычисленная энергия свободных ионов. Воздействие кубической составляющей кристаллического поля приводит к смещению и расщеплению энергетических состояний. Вместо дискретных энергетических состояний частично появляются энергетические зоны. Треугольная составляющая (внутри) кристаллического поля, а также спинорбитальное взаимодействие способствуют дальнейшим расщеплениям. Буквы *A*, *E*, *T*,..., используемые для обозначения энергетических состояний, отображают не орбитальные моменты, а симметрирующие свойства распределений электронов.

Другим наглядным примером энергетических уровней примесных центров являются редкие земли, встраиваемые в кристаллы и существующие там в виде ионов. У них оптические переходы происходят в частично заполненной 4*f*-оболочке. Действие кристаллического поля весьма незначительно по сравнению с внутриатомным взаимодействием, поскольку 4*f*-оболочка экранирована электронами внешних оболочек относительно кристаллического поля. Поэтому энергетические состояния редких земель в кристаллах почти такие же, как у свободных ионов. Это играет важную роль, например,

в случае неодимового лазера, созданного на основе легированного кристалла ИАГ (= иттрий-алюминиевый гранат), см. также п. 9.2.

Рис. 1.12. Схема энергетических уровней рубинового кристалла (Al₂O₃: Cr³⁺)

Центры окраски

Существует возможность такого воздействия на структуру кристаллов щелочных галогенидов (например, KCI), что возникает избыток атомов щелочных металлов. Недостаток атомов галогенов приводит к образованию дырок и, следовательно, анионных вакансий в кристалле (рис. 1.13). Валентные электроны избыточных атомов щелочей не связаны и захватываются анионными вакансиями.

Рис. 1.13. Центры окраски в кристаллах щелочных галогенидов

Электрон, захваченный в месте анионной вакансии, называется «центром окраски». Движение такого электрона в поле окружающих данную вакансию

атомов щелочных металлов приводит к дискретным энергетическим состояниям — в отсутствие центрального атома. Расстояние между этими энергетическими уровнями составляет, в зависимости от вещества, несколько электронных вольт, что и придает кристаллам характерную окраску: без этих примесных центров кристаллы остаются бесцветными и прозрачными. Помимо уже описанных простых центров окраски (F) существует еще целых ряд других центров, особенно важных при использовании лазеров. Так, центр окраски F_A состоит из галоидной вакансии, у которой соседний щелочной атом замещен другим атомом (см. п. 9.6).

1.6. Энергетические зоны в полупроводниках

Полупроводники могут быть описаны посредством групп располагающихся вплотную друг к другу энергетических уровней или зон. Без теплового возбуждения (T = 0 K) эти зоны либо полностью заселены электронами, либо абсолютно пусты. Самой населенной зоной является валентная, а наименее заполненной — зона проводимости (рис. 1.14а). Они разделены шириной запрещенной зоны, которая у полупроводников находится на уровне 0,1—3 эВ. Тепловое или оптическое возбуждение способно таким образом изменить энергию электрона, что он перейдет из валентной зоны в зону проводимости, причем образуется положительный заряд — дырка — в валентной зоне, поскольку в этом случае положительный заряд ядра атома уже не является полностью компенсированным. Обратный процесс рекомбинации электрона

Рис. 1.14. (а) Зона проводимости и валентная зона полупроводника на примере In P. Валентная зона при T = 0 К полностью заселена электронами (см. кружочки). (б) Энергия E_a и E_b как функция величины волнового вектора k (соответствует импульсу) для электрона в зоне проводимости и в валентной зоне. Максимальное значение k выражено через шаг (постоянную) решетки g ($k = 2\pi/g$). Используемые символы [111] и [100] указывают определенное пространственное направление в кристалле (кристаллографические индексы Миллера). При наличии соответствующей электронно-дырочной пары отмечается возможный оптический переход

из зоны проводимости с дыркой также возможен и протекает при отдаче энергии — например, излучении фотона.

Электроны в зоне проводимости движутся под действием внешних электрических полей, так что создается электронная электропроводность (проводимость *n*-типа). Дырки же в валентной зоне приводят к дырочной электропроводности (проводимость *p*-типа), причем дырки последовательно друг за другом заполняются электронами. Поскольку электроны движутся к положительному полюсу, дырки перемещаются в противоположном направлении — к отрицательному полюсу, что позволяет говорить о положительно заряженных дырках. При низких температурах электропроводность полупроводников довольно мала, так как при этом в зоне проводимости мало подвижных электронов, а в валентной зоне мало дырок.

Если максимум валентной зоны находится на уровне того же значения *k*, что и минимум зоны проводимости, то речь идет о прямозонных полупроводниках (с прямыми переходами). В случае же полупроводников с непрямыми переходами (например, кремния) минимум зоны проводимости смещен относительно максимума валентной зоны в пространстве волновых векторов.

Поглощение и излучение света осуществляются преимущественно на основе переходов между зонами без сколько-нибудь значимого изменения электронного импульса $0 \le \hbar k \le h/g$ (g — постоянная решетки полупроводника около 10^{-10} M), поскольку световые импульсы $\hbar k_p = h/\lambda_p$ (λ_p — длина волны около 10^{-6} M) малы по сравнению с электронными импульсами. В частности, электронные переходы от энергетического минимума зоны проводимости, где содержится большинство электронов, к максимуму валентной зоны могут совершаться в прямозонных полупроводниках с $\Delta k \approx 0$, то есть без участия фотонов. Полупроводники с прямыми переходами являются поэтому — по сравнению с полупроводниками с непрямыми переходами — эффективными эмиттерами фотонов и широко используются в лазерных диодах и светодиодах. При переходах между минимумом зоны проводимости и максимумом валентной зоны в полупроводниках с с непрямыми переходами имеем: $\Delta k \neq 0$, и импульс должен восприниматься фононами (коле-

Рис. 1.15. Зонная структура кремния как полупроводника с непрямыми переходами. При переходе от минимума зоны проводимости к максимуму валентной зоны происходит изменение электронного импульса. Непрямые переходы (см. также рис. 10.4) относятся к абсолютно невероятным и не годятся для лазера

баниями кристаллической решетки). В качестве примера здесь можно назвать кремний (рис. 1.15). Подобные переходы невероятны, ибо в них участвуют три «партнера»: фотон, электрон и фонон.

Энергия электронов и дырок

Электроны одной зоны обладают разной энергией и имеют разные импульсы. У свободных электронов в отношении импульса действительно: $p = m_0 v$, причем m_0 есть масса электрона, а v — его скорость. Таким образом, для кинетической энергии $E_{croform}$ получаем:

$$E_{\text{свободн.}} = \frac{m_0 v^2}{2} = \frac{p^2}{2m_0} = \frac{\overline{h}^2 k^2}{2m_0}.$$
 (1.12)

В физике твердых тел принято выражать импульс p через величину волнового вектора k: $p = \hbar k$.

При этом $\hbar = h/2\pi$ задается через постоянную Планка h. Величина волнового вектора k учитывает волновые свойства электронов: $k = 2\pi/\lambda$, причем λ есть длина волны электрона. Как видно из уравнения 1.12, отношение E - k представляет собой квадратичную функцию.

На нижней границе зоны проводимости (рис. 1.14б) электроны могут рассматриваться как практически свободные, так что здесь также имеет силу уравнение 1.12. Действие соседних атомов учитывается за счет того, что вместо массы электрона m^0 вводится эффективная масса электрона в зоне проводимости m_c и прибавляется энергетический край E_c зоны проводимости. В результате получаем для энергии E_a электрона в зоне проводимости:

$$E_{a} = E_{c} + \frac{\hbar^{2}k^{2}}{2m_{c}} .$$
 (1.13a)

Для энергии электрона в валентной зоне с эффективной массой *m*₀ действительно:

$$E_{b} = E_{v} + \frac{\hbar^{2}k^{2}}{2m_{v}}.$$
 (1.136)

В отличие от уравнения 1.13а, здесь мы имеем минусовой знак, а терм $\hbar^2 k^2/2m_{\nu}$ выводится из энергии верхней границы валентной зоны E_{ν} . Энергия ширины запрещенной зоны (англ. gap) составляет $E_{\rm g} = E_{\rm c} - E_{\nu}$.

Уравнения 1.13а и 1.13б имеют силу только вблизи границ валентной зоны при малых импульсах и низких значениях *k*. За пределами этой зоны возможны значительные отклонения (рис. 1.14б).

Плотности состояний

Для расчета полупроводникового лазера необходимо знать о распределении электронов и положительных дырок в зоне проводимости и валентной зоне. Плотность электронов с определенной энергией E есть произведение плотности состояний на вероятность заселения. Плотности состояний $\rho_{c}(E)$ и $\rho_{u}(E)$ показывают, сколь-

ко электронов способно принять определенное энергетическое состояние в зоне проводимости и валентной зоне. В качестве единицы измерения выбирается 1/м³. Плотности состояний вблизи границ зоны могут выражаться следующим образом (см. также раздел «Электронные волны в полупроводниках»):

$$\rho_c(E) = \frac{(2m_c)^{3/2}}{2\pi^2 \hbar^3} (E - E_c)^{1/2}, \quad E \ge E_c,$$
(1.14)

$$\rho_{\upsilon}(E) = \frac{(2m_{\upsilon})^{3/2}}{2\pi^2 \hbar^3} (E_{\upsilon} - E)^{1/2}, \quad E \le E_{\upsilon}.$$
(1.15)

Эти плотности состояний показывают, что одно энергетическое состояние может иметь многократное заселение. Причина этого состоит в том, что электроны могут передвигаться с определенной энергией в разных направлениях. При этом $\rho_c(E)$ есть плотность состояний в зоне проводимости, а $\rho_v(E)$ — плотность состояний в валентной зоне.

Вероятность заселения (распределение Ферми)

Вероятность того, что при заданной температуре *T* то или иное состояние энергии *E* будет заселено электроном, вытекает из распределения Ферми:

$$f(E) = \frac{1}{\exp[(E - F) / kT] + 1},$$
(1.16)

где *k* есть постоянная Больцмана, *F* — энергия Ферми, и предполагается тепловое равновесие между носителями зарядов в зоне проводимости и валентной зоне. Для нелегированных или собственных (внутренних) полупроводников энергия *F* находится примерно посередине ширины запрещенной зоны (рис. 1.16а). Согласно принципу Паули, заключающемуся в том, что любое электронное состояние заселено лишь максимум одним электроном, всегда имеет место *f*(*E*) ≤ 1. Вероятность того, что какое-либо состояние вообще не заселено или, соответственно, занято дыркой, составляет 1 - f(E).

Рис. 1.16. (а) Энергия Ферми *F* в нелегированном (собственном) полупроводнике, (б) энергия Ферми в зоне проводимости F_c при сильном легировании примесью *n*-типа, (в) энергия Ферми в валентной зоне F_v при сильном легировании примесью *p*-типа. Заселенность электронами (см. кружочки) показана при T = 0 K

Легирование

Электрические свойства полупроводников могут быть существенно изменены путем легирования. Введение донорных примесей (атомов с более высоким числом валентных электронов, чем содержит основное вещество) создает избыток свободно перемещающихся электронов, в то время как легирование акцепторными примесями (атомами с меньшим числом валентных электронов, чем содержит основное вещество) обеспечивает избыток дырок. В связи с легированием можно говорить о полупроводниках *n*-типа (с электронной электропроводностью) и полупроводниках *p*-типа (с дырочной электропроводностью). При очень сильном легировании энергия Ферми смещается вплоть до зоны проводимости (при легировании примесями *p*-типа), см. рис. 1.166 и 1.16в. При этом образуется частично заселенная зона. Полупроводники ведет себя, как металл, он — вырожден. Легированные таким способом полупроводники используются обычно для диодных лазеров.

Инжекция носителей заряда, электронная плотность и энергия Ферми

Электроны и дырки могут создаваться оптическим путем, то есть в результате освещения светом, или электрическим способом — под действием протекания тока в *p*-*n*-переходах.

При протекании тока *I* электронная плотность *N* определяется на основе скоростного (усредненного балансного) уравнения:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{I}{eV} - \frac{N}{\tau} \,, \tag{1.17}$$

где *I* есть инжекционный ток, *V* — объем активной зоны, τ — время жизни носителей заряда и *e* — электронный заряд. В стационарном случае (d*N*/d*t* = 0) плотность электронов *N* = *I* τ /*eV* прямо пропорциональна току.

Хотя при инжекции носителей заряда отсутствует тепловое равновесие между зонами и поэтому распределение Ферми согласно уравнению (1.16) не имеет силы, носители заряда, тем не менее, внутри зоны могут находиться в равновесии. Такая ситуация, в частности, имеет место, когда время релаксации энергии для переходов в пределах одной зоны заметно короче, чем для переходов между зонами. Это в значительной мере касается материалов, обычно используемых для полупроводников. При этом говорят о квазиравновесии и определяют энергию Ферми отдельно для зоны проводимости (F_c) и отдельно для валентной зоны (F_v). Квазиэнергия Ферми F_c и F_v находится в пределах зоны проводимости и, соответственно, валентной зоны. Например, F_c показывает, до какой энергии заселена зона проводимости при T = 0 К. Без инжекции носителей заряда составляющие энергии Ферми F_c и F_v совпадают, а весь уровень Ферми F располагается для нелегированных полупроводников в середине ширины запрещенной зоны.

Рис. 1.17 демонстрирует распределение носителей заряда полупроводника в состоянии квазиравновесия. Вероятность того, что энергетический уровень *E* в зоне проводимости заселяется электроном, выражается через $f_c(E) = 1/(\exp((E - F_c)/kT) + 1)$, распределение Ферми указывается с энергией Ферми F_c . В от-

ношении вероятности заселения энергетического уровня *E* в валентной зоне дыркой будет, соответственно, справедливо: $1 - f_v(E)$, причем $f_v(E)$ есть функция Ферми с уровнем Ферми F_v . Плотность носителей заряда электронов в зоне проводимости имеет вид: $n(E) = \rho_c(E) \cdot f_c(E)$, а плотность носителей заряда дырок в валентной зоне: $p(E) = \rho_v(E) \cdot (1 - f_v(E))$.

Плотность электронов N в зоне проводимости и энергия Ферми F_c зависимы друг от друга. В результате инжекции электронов величина f_c возрастает:

$$N = \frac{(2m_e)^{3/2}}{2\pi^2 \hbar^3} \int_{E_c}^{\infty} \frac{(E - E_c)^{1/2}}{\exp\left[(E - F_c / kT)\right] + 1} dE.$$
 (1.18)

Простую зависимость между энергией Ферми F_c и плотностью электронов N получают в случае T = 0 K:

Рис. 1.17. Полупроводники в квазиравновесном состоянии (распределение Φ ерми $f_c(E)$ и $f_v(E)$, а также плотности носителей заряда электронов n(E) и положительных дырок p(E))

Электронные волны в полупроводниках

Для решения многих проблем полупроводниковой техники, например, при вычислении плотностей состояний, электроны целесообразно рассматриваются как волны.

В случае расчета плотностей состояний с использованием уравнений (1.14) и (1.15) можно представить себя в полупроводниковом кубе с длиной ребра *L*. Волновая функция ψ должна выполнять периодические краевые условия, например, $\psi(x, y, z) = \psi(x + L, y, z) - для y и z$ соответственно. Эти краевые условия выполняются следующими данными для величины волнового вектора:

$$k = 0, \pm \frac{2\pi}{L}, \pm \frac{4\pi}{L}$$
 или $k = \pm n \frac{2\pi}{L}$. (1.19)

46

Глава 1. Свет, атомы, молекулы, твердые тела

Условие согласно уравнению (1.19) можно объяснить тем, что в полупроводниковом кубе формируются стоячие волны по уравнению $\lambda = L/n$ (n = целое число). Допустимые значения k различаются на величину $2\pi/L$. Это действительно во всех трех пространственных направлениях. Поэтому говорят, что электронное состояние в пространстве волновых векторов занимает объем ($2\pi/L$)³ = $(2\pi)^3/V$, причем $V = L^3$ есть объем полупроводника.

Объемный элемент в пространстве волновых векторов (k-пространстве) состоит из сферической оболочки с радиусом k и толщиной dk: $4\pi k^2 dk$. Число электронных состояний N в этом объемном элементе составляет:

$$N = \frac{h\pi k^2}{\left(2\pi\right)^3} V dk.$$

Таким образом, из расчета на объем *V* и толщину dk получаем число электронных состояний, обозначаемое как плотность состояний ρ:

$$\rho(k) = \frac{k^2}{\pi^2} \tag{1.20}$$

Каждое электронное состояние может заселяться двумя электронами с разными ориентациями спина (принцип Паули). Поэтому в уравнении (1.20) учитывается множитель 2.

Путем ввода энергии электронов согласно уравнениям (1.13а) и (1.14б) получаем плотности состояний в зоне проводимости и валентной зоне по уравнениям (1.14) и (1.15).

Потенциальный барьер

Потенциальный барьер (англ. quantum well) есть полупроводниковая структура, в которой тонкий слой полупроводника с небольшими интервалами уложен между двумя слоями полупроводника с более широким интервалом между зонами (рис. 10.19). Толщина *d* составляет 1—50 нм соответственно 3—200 атомным слоям. При столь небольшом размере отчетливо проявляется влияние квантования *k*. На рис. 1.18 показаны электронные состояния в зоне проводимости для n = 1, 2, 3, вычисляемые с применением уравнений (1.20) и (1.13а и б).

Рис. 1.18. Электронные состояния с энергией E_1, E_2, E_3 в потенциальной яме. Эта энергия возникает при движении электронных волн перпендикулярно стенам. Помимо этого имеются еще и иные направления распространения, приводящие к образованию другой энергии. Четкие энергетические состояния возникают лишь для одной квантовой точки

ЗАДАЧИ

- **1.1.** (а) Лампа накаливания на 100 ватт излучает световую мощность P = 1 ватт. Как велика плотность мощности в r = 0,1 и на расстоянии 1 метра? (б) Сравните плотность мощности лампы накаливания с плотностью мощности гелийнеонового лазера 1 мВт ($\lambda = 633$ нм) с диаметром луча d = 0,7 мм.
- **1.2.** (а) Сколько фотонов в секунду излучает гелий-неоновый лазер ($\lambda = 633$ нм)? (б) Какова энергия фотона *W* в Вт·сек и эВ?
- **1.3.** Какова частота: (а) красного излучения полупроводникового лазера ($\lambda = 635$ нм) и (б) синего излучения аргонового лазера ($\lambda = 488$ нм)?
- Вычислить энергию квантов CO₂-лазера и аргонового лазера (с λ = 10600 и 488 нм) в джоулях и электрон-вольтах.
- **1.5.** Рассчитать энергетические состояния атомарного водорода и длину волны переходов $E_2 \rightarrow E_1$ и $E_3 \rightarrow E_2$, представив их в виде числовых значений.
- **1.6.** Выполнить согласно рис. 1.10 схему вращательно-колебательных уровней электронного основного состояния *X* молекулы азота N₂ с частотой колебаний $f \approx 7 \cdot 10^{13}$ Гц и постоянной вращения $B_{z} = 1,96$ см⁻¹.
- ний $f \approx 7 \cdot 10^{13}$ Гц и постоянной вращения $B_r = 1,96$ см⁻¹. **1.7.** К расплаву Al₂O₃ добавляется масса 0,05% Cr₂O₃. Сколько атомов Cr и, соответственно, ионов Cr имеется из расчета на 1 см³?
- **1.8.** Начиная с какой длины волны кремний становится прозрачным для излучения? (Интервал между валентной зоной и зоной проводимости составляет 1,2 эВ).
- **1.9.** Вычислить плотность состояний $\rho_c(E)$ электронов в параболической зоне.
- **1.10.** Доказать, что функция Ферми $f(\vec{E})$ для $T \to 0$ переходит в функцию скачков (f(E) = 1 для $E < E_f$ и f(E) = 0 для $E > E_f$), составить соответствующую схему.
- **1.11.** Вычислить значение функции Ферми для энергии $E = 0, E = E_f$ и $E \to \infty$; определить f(E) для T > 0.
- **1.12.** Показать, что для $E >> E_{f}$ и E >> kT распределение Ферми переходит в распределение Больцмана.

ГЛАВА 2

ПОГЛОЩЕНИЕ И ИЗЛУЧЕНИЕ СВЕТА

Рассмотрев в первой главе основополагающие свойства атомов, можно перейти к вопросу о взаимодействии света с атомами и веществами. Особым видом такого взаимодействия являются процессы поглощения, излучения и усиления света, формирующие принципы функционирования лазеров.

2.1. Поглощение

При прохождении света через слой вещества происходит его поглощение. Для описания процесса поглощения рассматривается плоская световая волна с интенсивностью I_0 , падающая на слой толщиной d (рис. 2.1). За этим слоем волна обладает уже меньшей интенсивностью, чем раньше. Плотность мощности Iпрошедшего излучения пропорциональна плотности мощности I_0 поступившего излучения и экспоненциально зависит от толщины слоя (закон Бэра):

Рис. 2.1. Прохождение света через поглощающий материал

Характеризующий каждое вещество параметр α обозначается как постоянная поглощения, или коэффициент (показатель) поглощения. Примеры показателей поглощения: $\alpha \approx (\text{от 1 до 10 км})^{-1}$ (стекловолокно) и $\alpha \approx (1 \text{ нм})^{-1}$ (металлы).

Для вывода соответствующего закона в слое вводится координата x. Предполагается, что имеющаяся в месте x интенсивность I(x) снижается на величину dI, когда световая волна перемещается от $x \\ k \\ x + dx$. Поглощенная интенсивность dI пропорциональна имеющейся интенсивности I(x) и значению dx. Коэффициент пропорциональности α есть уже введенный показатель поглощения:

$$dI = -\alpha I(x)dx. \tag{2.2}$$

Интегрирование этого уравнения с краевыми условиями $I(0) = I_0$ и I(d) = I позволяет сформулировать закон поглощения Бэра — см. уравнение (2.1).

Атомистическая интерпретация поглощения

Процесс поглощения может быть описан на атомистическом уровне. Атомы или молекулы обладают дискретными или квантованными энергетическими состояниями $E_1, E_2, E_3,...$, которые могут быть наглядно представлены в схеме уровней (рис. 2.2). В жидкостях (например, в красителях) и твердых телах из определенных состояний формируются энергетические зоны. В невозмущенном состоянии все атомы (или молекулы) находятся на уровне самой низкой энергии E_1 — это называется «основным состоянием». Когда на атом попадает свет с частотой f_{12} , возможен переход в более высокое энергетическое состояние E_2 , если выполнено условие Бора:

$$E_2 - E_1 = h f_{12}, (2.3)$$

причем $h = 6,626 \cdot 10^{-34}$ Дж · сек есть постоянная Планка. В результате свет теряет фотон с энергией hf_{12} . Следовательно, интенсивность понижается — происходит поглощение.

фотон hf_{12} поднимает электрон с нижележащего энергетического уровня E_1 на вышележащий уровень E_2 , а сам при этом исчезает.

Спонтанное испускание:

электрон, находящийся сначала в вышележащем, или возбужденном, состоянии, переходит на нижележащий энергетический уровень, испуская при этом фотон.

Вынужденное (индуцированное) испускание:

фотон попадает на возбужденный электрон, который в результате этого переходит на нижележащий энергетический уровень. Одновременно возникает второй фотон, что приводит к усилению падающего света