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Chapter 1
INTRODUCTION 

TO MATHEMATICAL ANALYSIS

1.1. FUNCTIONS
1.1.1. Defi nition of function, numerical intervals 
and neighborhood of points

One of the basic mathematical concepts is the concept of a function, 
which establishes the relationship between the elements of two sets.

Defi nition. Let Х, Y be some sets, whose elements are some numbers. 
If each number x ∈ Х is assigned by some law or rule f the corresponding 
number y ∈ Y, then they establish that, on the set of Х, there is  a numeric 
function f, and write this functional dependence with the formula y = f (x) or, 
more clearly, in the form of the following diagram:

 ⎯⎯→ .fX Y  (1.1)

The variable x is called a independent variable, by other words, an argu-
ment, and the variable y is called an dependent variable (on x), by other words, 
a function.

The set of X — a range of the argument variation — is called the domain of 
the function (DOF). The set of Y, containing all the values that y takes, is 
called the domain of function change.

Further, the sets of X and Y are often  fi nite or infi nite intervals.
Finite intervals:

 � open interval, by other words, simply interval (a; b) is a set of real num-
bers, satisfying the inequalities of a < x < b, by other words, (a; b) ⇔ 
(a < x < b), where ⇔ is the equivalence sign;

 � closed interval (by other words, a segment) [a; b]: [a; b] ⇔ (a ≤ x ≤ b);
 � half-open intervals (a; b] and [a; b): (a; b] ⇔ (a < x ≤ b) and [a; b) ⇔ (a ≤ x < b) 
respectively.
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Infi nite intervals:
 � (–∞, +∞) = R is the set of all real numbers, i.е. R ⇔ (–∞ < x < +∞); 
analogously, (а; +∞) ⇔ (a < x < +∞) etc.

Numbers a, b are called respectively left and right ends of these intervals.
Symbols of –∞ and +∞ are not numbers, but express the process of in-

fi nite movement of the numeric axis points to the left and to the right from 
the origin 0.

Let х0 be any real number (a point on the number axis). A neighborhood of 
point х0 is any interval (a; b), containing point х0, interval (х0 – ε; х0 + ε), 
where ε > 0, symmetrical about х0, is called ε-neighborhood of the point х0 
(Fig. 1.1).

If x ∈ (х0 – ε; х0 + ε), the inequalities are true as follows:

 х0 – ε < x < х0 + ε,
the latter is equivalent to 
 | x – х0| < ε.

The particular value of function  f (x) when x = а, can be found by 
substituting а instead of the argument: f (a). For all that, the а can be 
either an alphanumeric expression or some function, e.g. φ(t). In the 
last case, f (φ(t)) will be a combined function, which we will meet in Sec-
tion 1.1.3.

Example 1. Find domain and range of the function

 = − 21 .y x

Solution. The domain of this function consists of all x, for which it makes 
sense. Thus, X = {| x | ≤ 1} ⇔ [–1; 1], Y = [0; 1], i.е. ⎡ ⎤− ⎯⎯→⎣ ⎦1; 1 [0; 1].f

Example 2. Find the domain and range of the function

 ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
1 .
2

n

ny

Fig. 1.1. ε-Neighborhood of a point х0

ε ε

x0 – ε x0 x0 x0 + ε
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Solution. In this case, the independent variable n takes integer positive 
 values n ∈ N = {1, 2, ...}, therefore, y is a function of a natural argument and 

is calculated by the given formula 
⎧ ⎫⎪ ⎪⎛ ⎞⎨ ⎬= ⎯⎯→⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

1 1 1, , ..., , ... , .
2 4 2

n
fY N Y

Example 3. If ε = 0.1, construct ε-neigh-
borhood of the point х0 = 2.

Solution. Under the defi nition, ε-neigh-
borhood of the point х0 = 2 will be inter-
val | x – 2| < 0.1, i.e. –0.1 < x – 2 < 0.1 ⇒ 
⇒ 1.9 < x < 2.1 (Fig. 1.2).

Self-study work
1. Construct intervals of change for the variable x, satisfying the inequa-

lities:
1) | x | < 4;   2) x2 ≤ 9;
3) | x – 4 | < 1;  4) –1 < x – 3 ≤ 2;
5) x2 > 9;   6) (x – 2)2 ≤ 4.

2. Find the domain of function:
1) = + 2;y x   2) = − 29 ;y x

3) = − 24 ;y x x   4) = − + +4 ;y x x

5) −
=

1arcsin ;
2

xy  6) = − 2sin ;y x

7) −
= −

216 ;
2

x xy  8) = + − −1 3 .y x x

3. Calculate function values at the points given:
1) = − + +2( ) 1; (2), ( 1);f x x x f f a

2) 2
2 3 3 1 1φ( ) ; φ , φ , ;

2 φ( )1
x

x
x xx

3) ⎛ ⎞ ⎛ ⎞− + −
= −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

2 ( ) ( )( ) ; , .
2 2

F b F a a h a hF x x F F
b a

Fig. 1.2. Interval |x – 2| < 0.1
1.9 2 x2.1
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1.1.2. Some properties of functions and their graphs
Let function f : X → Y be given. The rule for fi nding y, knowing x, can be 

defi ned by the function graph.
Defi nition. The function graph in a rectangular Cartesian coordinate system 

is a set of all points, whose abscissas are the values of the argument, and ordi-
nates are the corresponding values of the function.

Example 1. The y = x2 function graph is the parabola, which axis of sym-
metry coincides with the positive semi-axis of ordinates, and the vertex does 
with the origin of the coordinates system (Fig. 1.3).

Often, graphs are automatically drawn by self-writing devices or displayed 
on a monitor screen. The advantage of this method is clearness, the disadvan-
tage is inexactness.

A function can also be defi ned using tables or formulas (analytically). The 
tabular method is used practically when processing results of observations of 
the approximate function values. The analytical method is most convenient for 
the complete curve sketching using mathematical analysis methods.

Let us introduce the basic characteristics of a function: monotonicity, 
boundedness, a property of being even (odd), periodicity.

Defi nition. A function is called increasing (decreasing) on an interval, if the 
larger value of the argument from this interval corresponds to the larger 
(smaller) value of the function.

The graph of a function increasing on an interval (a; b), if it is viewed from 
the left to right rises (Fig. 1.4, a), and for a decreasing function the graph goes 
down (Fig. 1.4, b).

Defi nition. The interval of the indepen-
dent variable, which function increases (de-
creases) on, is called the interval of increase 
(decrease). Both intervals of increase and 
decrease are called monotonicity intervals of 
a function, and the function on these inter-
vals is called a monotonic function.

Defi nition. The value of an argument 
at which function becomes zero, is called 
zero of a function.

If function is defi ned by the formula 
y = f (x), then zero (or zeros) of the func-
tion can be found by solving the equation 
f (x) = 0.Fig. 1.3. Graph of the function y = x2

1

0–1

y

x
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When the defi nition is graphical, zeros of the function are the points where 
the graph is crossed by the x-axis.

Example 2. Find zeroes of function y = 2x + 1.
Solution.

 + = ⇒ = −
12 1 0
2

x x  (Fig. 1.5). 

Defi nition. A function is called even if the value of a function does not 
change for changing the sign of an allowed value of the argument. A function 
is called odd if changing the sign of the allowed value of the argument changes 
the sign of the function value.

So, if the function f (x) is even, then for 
all x of its domain, the equality f (–x) = 
= f (x) should be true, as it happens, e.g., 
when f (x) = x2, and if f (x) is odd, then 
f (–x) = –f (x) is true for any x of the 
domain of the function, like, e.g., in the 
case of f (x) = x3.

Notice, that both even and odd func-
tions are without fail defi ned in the do-
main, which is symmetrical about the 
origin of the coordinates system.

Fig. 1.4. Graphs: а is a function, increasing on an interval (a; b); b is a function, 
 decreasing on an interval (a; b)

y y

f (x2)

f (x2)f (x1)
f (x1)

x x

b

b
a

a  b

a0 0x2

x2x1 x1

x1 < x2 ⇒ f (x1) < f (x2) x1 < x2 ⇒ f (x1) > f (x2)

Fig. 1.5. Graph of the function y = 2x + 1

y

x0

1

Root of an equation 

2x + 1 = 0

1

2
−
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At the same time, the graph of an even function is symmetrical about the 
ordinate axis (similarly in Fig. 1.3), and the function graph of an odd function 
is symmetrical about the origin of the coordinates system (as in Fig. 1.6).

Notice, that not all functions can be even or odd. Such functions (neither 
odd, nor even ones) we will call general functions.

Defi nition. Function f (x), defi ned on the set of Х, is called bounded on this set, 
if there is such a number М > 0, that inequality | f (x)| ≤ M is true for all x ∈ Х.

A graph of the bounded function is located between straight lines y = M 
and y = –M (Fig. 1.7).

Defi nition. Function f (x) is called periodic, if there is such a positive num-
ber a, that f (x + a) = f (x) = f (x – a) for any x from the DOF (points x, 
x + a, x – a belonging to the domain of a function). At the same time, the smal-
lest positive number а with such a property (if any) is called a function period.

A periodic function graph is obtained by repeating the part of the graph, 
corresponding to the interval of the abscissa axis, which is equal in length to 
the function period.

An example of a periodic function is the function y = cos x, defi ned on the 
real axis, whose period is 2π (Fig. 1.8).

Fig. 1.7. Graph of the function of the 
bounded function

y y = M

y = –M

xa 0

y y = cosx

x
0

1

–1

–2π

–π

2π

π

−
3
2
π −

π
2

−
π
2

3π
2

Fig. 1.8. Graph of the function y = cos x

Fig. 1.6. Graph of the function  y = x3

y

x0
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Thus, a shift of the graph of a periodic function along the abscissa axis by 
an interval, whose length is a multiple of a period, does not change this graph. 
In particular, the domain of a periodic function is not bounded.

Self-study work
1. Indicate, which of the following functions are even or odd:

1) sin ;x
x

  2) −

+

1;
1

x

x

a
a

3) +
1 ;x
x

a
a

 4) −
1 ;x
x

a
a

5) x sin2x – x3; 6) x + x2;

7) | x |;  8) 
tan

.
sin2

x
x

2. Find the function zeroes:
1) y = ax + b;  2) y = x2 + px + q;
3) y = x4 + px2 + q; 4) y = 2 log10 (x + 1);
5) y = a2x – a2 (a > 0); 6) y = 2sin x – 1;
7) y = tan x + 1.

3. Find function period:
cot

1) tan2 ; 2) sin ; 3) .
2 cos2

x x
y x y y

x
= = =

4. Using properties of the odd and even function graphs and the results of 
Section 1.1.2, construct the following function graphs:
1) y = | x |;  2) y = –x + | x |;
3) y = –| x – 2 |;  4) y = x – 4 + | x – 2 |, x ∈ [–2; 5];
5) y = log10 (x + 2); 6) y = 2–x;
7) y = x2 + 2x + 2; 8) y = –x2 + 4x.

1.1.3. Composite function. Inverse function
Defi nition. Composite function (Fig. 1.9) is a function, whose argument is 

also a function, i.е. F (x) = f (φ(x)), by other words, in the form of a diagram, 
similarly to the formula (1.1).

In other words, in order to calculate the value at point x of the composite func-
tion f(φ(x)), consisted of functions f and φ, we should fi rstly fi nd the particular 
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value u = φ(x) of inner function φ, and 
then substitute it as an argument in the 
outer function f.

In this case, the domain of function 
F (x) should be selected so that the inter-
mediate set U, on the one hand, is the 
range of function φ(x), and, on the other 
hand, is the domain of function f (u).

Example 1. Consider composite function y = log10 (1 – x2). In this case,  
y = f (u) = log10 u, while u = φ(x) = 1 – x2. The domain of the function is y is 
interval (–1, 1), in which both function φ (x) and function 

( )
( )

u x
f u

−ϕ  make 
sense.

Let us consider a function with domain Х and range Y. Let us assume, that 
each value y ∈ Y сorresponds to one defi nite point x ∈ Х, as such y = f (x). 
Then, there exists a function φ: Y → X, which translates any y ∈ Y to x ∈ Х, 
that meets the property y = f (x) mentioned above.

Functions f and φ with the properties above-cited are called reciprocal, 
and function φ is called the inverse of f. Having given the fact, that symbol x, 
as a rule, corresponds to an independent variable, the format y = φ(x) is as a 
rule used instead of x = φ(y).

From the defi nition of inverse function it follows, that any strictly monotonic 
function has an inverse one.

There is a simple relationship between function y = f (x) and y = φ (x) 
graphs: the graph of inverse function y = φ (x) is symmetrical to the graph of 
function y = f (x) given about the bisector of the angles formed by quadrants I 
and III.

Notice, that reciprocal functions f and φ meet the relation given below and 
can be calculated as follows:

 f (φ(x)) = φ(f (x)) = x. (1.2)

Example 2. Let y = f (x) = x3. Then f (φ(x)) = φ3(x) and the equality (1.2) 
gives φ3(x) = x, or φ(x) = х1/3, which, however, follows easily from the rela-
tion y = x3 (Fig. 1.10) directly.

It is important to keep in mind that function f (x), increasing or decreasing 
on set X, has an inverse function known to be (the defi nition of increasing and 
decreasing functions is given in Section 1.1.2).

Fig. 1.9. Composite function
YX U

F

ϕ f
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Otherwise, the uniqueness of the correspondence between X and Y is vio-
lated, and the inverse function does not exist. However, as a rule, domain X 
can be divided into intervals, where function f (x) increase or decrease, and on 
each of them the inverse function can be defi ned.

Example 3. Let y = x2. Then Х = (–∞; ∞), and Y = [0; +∞). Thus, 
no one-to-one correspondence between X and Y (each y ≠ 0 is associated 
with two x values, diff ering in signs), and, therefore, no inverse function 
(Fig. 1.11) too.

If Х is divided into (–∞; 0] and [0; +∞), then on each half-line, there is 
one-to-one dependence y = x2. Therefore, on ray (–∞; 0], function y = x2 
has inverse function = − ,y x  and on ray [0; +∞) the inverse function of it is 
one = .y x

Example 4. Let function y with independent variables x is expressed by 
linear dependence 3x + 2y – 6 = 0. Find the inverse function and construct 
graphs of direct and inverse functions.

Fig. 1.10. Graphs of reciprocal functions y = x3 and y = x1/3

y

x

y = x1/3

y = x3

0

–1

–1 1

1
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Solution. To fi nd the inverse function in a common coordinate system with 
the direct function, it is suffi  cient to exchange x and y in the corresponding 
equation.

Thus, in our example, the inverse relationship is expressed by relation 
3y + 2x – 6 = 0 and is also linear.

Constructing the graphs (Fig. 1.12), it was taken into account that a straight 
line is uniquely defi ned by any pair of diff erent points lying on it. In particu-
lar, the straight line 3x + 2y – 6 = 0 is defi ned by points (0; 3) and (2; 0).

Note, that in accordance with properties of reciprocal functions, the 
straight lines in Fig. 1.12 are symmetrical about the bisector of the angles 
formed by quadrants I and III.

1.1.4. Elementary functions
Defi nition. The basic elementary functions are the following:
1) power function: y = xn, when n is a real number, x > 0 (in some cases, 

particularly, with natural n, the power function is defi ned on the whole 
real axis);

2) exponential function: y = ax, where a > 0, а ≠ 1, and X = R;
3) logarithmic function: y = logax, when a logarithm base is  a > 0, а ≠ 1, 

and X = (0; +∞);
4) trigonometric functions y = sin x, y = cos x, y = tan x and y = cotan x;

Fig. 1.12. Graphs of the reciprocal linear 
functions 

y

0

3

3

2

2 x

3x + 2y – 6 = 0

3y + 2x – 6 = 0

Fig. 1.11. Example of a function, which 
does not have a reciprocal function

y

0 1

1

–1 x

x2

x

x–
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5) inverse trigonometric functions: y = arcsin x, y = arccos x, y = arctan x 
and y = arccotan x.

The set of elementary functions includes all the basic elementary functions 
and constants, as well as all the functions derived from them using four arith-
metic operations and the operation of taking a function from a function ap-
plied sequentially a fi nite number of times.

E.g., the functions ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

2
10log 1y x x , 

4

2

2
arctan

1

x
y

x
=

−
 and tany x x= −  

are elementary. The function

 
⎧ ≤⎪= ⎨

>⎪⎩
2

, 1
, 1

x x
y

x x

;

is not elementary.
The domain of an elementary function is all the values of the argument for 

which this function makes sense.
E.g., the domain of function = −2 1y x  is set X = (–∞ < x ≤ –1 ∪  1 ≤ x < +∞). 

In this case, the symbol ∪  means the union of the intervals.
Let us consider power and exponential functions.
Power function y = xn with integer n is defi ned on the whole real axis; it is 

even, if n is even, and it is odd, if n is odd (see Fig. 1.2 and 1.5).
When n is arbitrary, the function is considered in the area x > 0. If n > 0, 

then the function graphs y = xn increase from zero to infi nity on the interval 
(0; +∞), pass through points (0; 0) and (1; 1) and are divided by straight line 
y = x into curves, that are convex downward when n > 1 and convex upward 
if 0 < n < 1 (Fig. 1.13, а).

If n < 0, then function ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

1 n
ny x

x
 decreases from infi nity to zero 

(Fig. 1.13, b).
The inverse function to function y = xn, x > 0, is the one =

1

.ny x
We are reminding, that

 ( ) ;
ba abx x=  (1.3)

 =
n

m nmx x  (1.4)

(n and m are positive integers) and, particularly, =
1

.n nx x
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Exponential function y = ax, –∞ < x < ∞, and logarithmic one y = loga x, 
x > 0, when parameter a is the same, are reciprocal. Their graphs are sym-
metrical about the bisector of the angles formed by the quadrants I and III 
(Fig. 1.14).

An exponential function is always positive, so its graph is located above the 
axis Ox. In addition, since a = 1, it passes through the point (0; 1). For  a > 1, 
an exponential function increases from zero to infi nity, and for a < 1 it dec-
reases from infi nity to zero. Notice, that graph of an exponential function 
with base a is symmetrical about axis Oy to the exponential function graph 

with base 1
a

, which follows from the equality −⎛ ⎞
=⎜ ⎟

⎝ ⎠

1 x
xa

a
 (Fig. 1.15).

y y

а

O O1 1

1 1

x x

b

y = ax, a > 1

y = ax, a < 1y = logax

y = logax

Fig. 1.14. Exponential and logarithmic functions graphs: а is for a > 0; b is for a < 0

y

а

y

0 01 1

1 1

x

b

x

xn, n > 1
y = x

xn, 0 < n < 1

y = xn,  n < 0

Fig. 1.13. Graph of the function y = xn: а is for n > 0; b is for n < 0
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We are reminding, that function 
y = ex (e = 2.718...) is called exponen-
tial, and its graph is called an exponential 
curve; logarithms with base е are fi nd as 
log x and called natural one. Logarithms 
with base 10 are designated by log10 x and 
called as decimal one. Thus, logex = log x, 
log10x = log x.

Taking into account that logarithmic 
and exponential functions are reciprocal, 
we have (see (1.2))

             loglog , ,a xx
a a x a x= =  (1.5)

where the fi rst equality is true for any x and the other one for x > 0.
In particular,  x = elogx and, therefore (see (1.3)),

 xn = enlogx, x > 0 (1.6)

(it is the representation of power function with exponential one).
The following formula is true

 
log

log ,
log

b
a

b

x
x

a
=  (1.7)

i.е., logarithms of numbers with diff erent bases (a and b, respectively) are 
proportional to each other with a proportionality coeffi  cient (transition mo-
dule) =

1 log .
log a

b

b
a

Example 1. Express log2x through log10 x and log x.
Solution.

  
= = ⋅

= = ⋅

10
2 2 10

10

2 2

log
log log 10 log ,

log 2
loglog log log .
log2

x
x x

xx e x

Example 2. Write function y = 2x as an exponential function with base 10.
Solution. ⋅= =10 10log 2 log 22 10 10 .

x xx

Fig. 1.15. Graph of the function 
y = 2x and y = 2–x

y y = 2x

O

1

log x

1

2

x

y
⎛ ⎞= ⎜ ⎟
⎝ ⎠
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y

y = cosx

y = sinx

x

1

–1

–π π
−

3
2
π −

π
2

−
π
2

3π
2

O

Fig. 1.16. Graph of the function y = sin x and y = cos x

y

x–π π−
π
2 −

π
2

3π
2

O

Fig. 1.17. Graph of the function y = cotan x

1.1.5. Trigonometric functions
First, let us remind that, in mathematical analysis, the argument of trigo-

nometric functions is always taken a radian arc or angle measure, i.e. a num-
ber equal to the ratio of the length of this arc to the radius of a circle. In 
this way,

 rad rad

180
, or ,

180

π
α = α° α° = α

π
 (1.8)

where α° is a degree measure, and αrad is a radian measure of the angle. Par-
ticularly,

 45 , 60 , 30 , 90
4 3 6 2
π π π π

⇔ ° ⇔ ° ⇔ ° ⇔ °  etc.

Trigonometric functions are periodic: sin x and cos x have the period of 2π 
(Fig. 1.16), at the same time, tan x and cotan x have the period of π (Fig. 1.17).
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A cosine graph diff ers from the sine graph by the shift to the left along the 

axis Ox by ,
2
π  because cos sin

2
x x

⎛ ⎞π
= +⎜ ⎟

⎝ ⎠
 (see Section 1.1.2).

Functions sin x, tan x and cotan x are odd, though function cos x is even. 
Finally, sin x and cos x are defi ned for any x, tan x — for all x, except for the 
points such as (2 1) ,

2
k π

+  where k is any integer, and cotan x is defi ned for 

any x, except the points such as the kind kπ.
We are reminding, that

  cos sin ; sin cos ;
2 2

x x x x
⎛ ⎞ ⎛ ⎞π π

= ± = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 + = =

= − = − = −

2 2

2 2 2 2

sin cos 1; sin2 2sin cos ;
cos2 cos sin 1 2sin 2cos 1;

x x x x x

x x x x x
 (1.9)

 
2

sin 2tan
tan ; tan2 ;

cos 1 tan

cos
cot ; cot tan .

sin 2

x x
x x

x x

x
x x x

x

= =
−

π⎛ ⎞= = −⎜ ⎟
⎝ ⎠

1.1.6. Inverse trigonometric functions
Since trigonometric functions are periodic, each value of the function cor-

responds to an infi nite number of argument values. Thus, no one-to-one cor-
respondence between x and y, and, therefore, a single-valued inverse function 
cannot be defi ned.

To solve the problem of fi nding x by y, if y = sin x , they do the following.
Function y = sin x on the interval –π/2 ≤ x ≤ π/2 increase (Fig. 1.18) and, 

therefore, has an inverse function, fi nd by y = arcsin x.
Taking in account that the graph of the inverse function is symmetrical to 

the graph of a direct function about the bisector of the angle formed by quad-
rants I and II , we can fi nd the graph of function arcsin x.

Domain Х of the function y = arcsin x is segment [–1; 1], and the range 
of Y is segment [–π/2; π/2], i.e.,

 arcsin1; 1 /2; /2 .x
⎡ ⎤ ⎡ ⎤− ⎯⎯⎯⎯→ −π π⎣ ⎦ ⎣ ⎦
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In addition, y = arcsin x is an odd and increasing function.
The value of the function arcsin x is the radian measure of the angle, the 

sine of which is equal to the value given of the independent variable x; at the 
same time, among all the angles satisfying this condition, only the angle of 
the segment [–π/2; π/2] is chosen, i.e.
 y = arcsin x ⇔ sin y = x; | y | ≤ π/2. (1.10)

All values of y, which satisfy the equation sin y = x, are found by the 
 formula
 y = πk + (–1)k arcsin x; k = 0, ±1, ±2, ... (1.11)

E.g., the solution of the equation =
1sin ,
2

y  | y | ≤ π/2, is 1arcsin
2

, i.e. 

number π/6. The general solution of the equation =
1sin
2

y  will be numbers 

( 1)
6

ky k π
= π + − , or 5 1 5 1..., 1 , 1 , , , 2 , ...

6 6 6 6 6
π

− π − π π π

The function, which is inverse of y = cos x, is defi ned similarly. Then 
we have

 arccos1; 1 0;x
⎡ ⎤ ⎡ ⎤− ⎯⎯⎯⎯⎯→ π⎣ ⎦ ⎣ ⎦

Fig. 1.18. Graph of the function y = arcsin x

y

y = arcsinx

y = sinx

x0

–1

1

π
−

π
2

−
π
2

π
2

π
2



1.1. Functions 27

or
y = arccos x ⇔ cos y = x; 0 ≤ y ≤ π.

Function y = arccos x (Fig. 1.19) and 
satisfi es the equality of
          arccos(–x) = π – arccos x. (1.12)

The general solution of equation 
cos y = x, | x | ≤ 1, has the form
                 y = 2πk ± arccos x.           (1.13) 

Notice the formulas:

 
2sin(arccos ) cos(arcsin ) 1 ;

arcsin arccos .
2

x x x

x x

= = −
π

+ =
 (1.14)

Function y = arctan x is defi ned on the whole real axis; the range of the 
function is the open interval (–π/2; π/2), i.е.

 ⎡ ⎤⎯⎯⎯⎯⎯→ −π π⎣ ⎦
arctanR /2; /2 .x

This function is increasing and odd (Fig. 1.20). 
The numbers of the form

 y = πk + arctan x. (1.15)
satisfy the equation tan y = x.

Analogously, function y = arctan x is defi ned on the whole real axis and 
takes values on interval (0; π). It decreases (Fig. 1.21) and satisfi ed to equality
 arccot(–x) = π – arccot x. (1.16)

Fig. 1.19. Graph of the function 
y = arccos x

y

x0–1 1

π

−
π
2

Fig. 1.20. Graph of the function 
y = arctan x

0

π
2

−
π
2 Рис. 1.21. Graph of the function 

y = arccotan x

0

π
2

π
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The general solution of equation cotan y = x has the form of
 y = πk + arccot x. (1.17)

Notice the formulas:

 

= =

π
+ =

= =

1
tan(arccot ) cot(arctan ) ;

arctan arccot ;
2

1 1
arctan arccot ; arccot arctan .

x x
x

x x

x x
x x

 (1.18)

1.2. LIMITS
1.2.1. Limit of function

The theory of limits is of fundamental importance in mathematical analy-
sis. With its help, such properties of a function as continuity, diff erentiability, 
integrability etc. are determined.

Let us consider an example. Let the function be given by −
=

−

2 1( )
1

xf x
x

, 

defi ned for any x, except of x = 1. Let’s examine the behavior of this 
function x, when values x that do not diff er from 1 much. To do this, we 
will make a table of function values on the interval that we are interesting in 
(Table 1.1).

We see that the closer x approaches 1, the closer f (x) values are to 2. In 
such cases, the number 2 is said to be the limit of function f (x) for x, tending 
to 1 (or more briefl y: f (x) → 2 for x → 1).

We can now give a strict defi nition of a function limit.
Defi nition. Let function f (x) is defi ned in some neighborhood of point х0, 

except, maybe, point х0 itself. The number b is called the function limit 
in point х0 (or when x → х0),  if for any positive ε, however small it is, 
the ine quality | f (x) – b | < ε  is true for all x ≠ х0 of a certain neighborhood of 
the point х0.

Table 1.1

x 0.97 0.98 0.99 1.01 1.02

f (x) 1.97 1.98 1.99 2.01 2.02
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It is written as follows: 
0

lim ( ) .
x x

f x b
→

=

Geometrical meaning of this defi nition: for any ε-neighborhood of point 
b (Fig. 1.22) there exists a certain neighborhood of point х0 (e.g., δ-neigh-
borhood), such that for all x ≠ х0 of that neighborhood the corresponding 
points of the graph of f (x) locates inside a range of 2ε wide, limited by 
straight lines y = b + ε, y = b – ε.

This defi nition does not specify how x approaches x0: from the left, from 
the right, or oscillation about x0. But sometimes it is essential.

Defi nition. Number b1 is called function y = f (x) limit from the left at 
point х0, if f (x) → b1, when x → х0,  being less than х0.

It is written as follows: 
→ −

=
0

10
lim ( ) .

x x
f x b

A function limit from the right is defi ned and written similarly: 

→ +
=

0
20

lim ( ) ,
x x

f x b  if f (x) → b2, when x → х0, being more than х0.

Left and right function limits are called one-sided (Fig. 1.23). Obviously, 
if there exists 

→
=

0

lim ( ) ,
x x

f x b  then both one-sided limits also exist and are 
equal to b.

The converse is also true: if there  exists one-sided limits, both equal to b, 
then 

→
=

0

lim ( ) .
x x

f x b

If one-sided limits are not equal to each other (b1 ≠ b2), then 
→ 0

lim ( )
x x

f x  
does not exist.

y
y = f (x)

b + ε

2ε

b – ε

b

xx0 – δ x0 +  δx0 0

Fig. 1.22. Geometrical meaning of the function limit at point х0
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If the function y = f (x) is defi ned on 
interval (а; +∞), then the function limit 
can be defi ned for x → +∞.

Defi nition. Number b is called function 
limit when x → +∞ (i.е. 

→+∞
=lim ( )

x
f x b ), if 

for whatever small ε > 0 and any suffi  cient-
ly large x inequa lity | f (x) – b | < ε is true.

In Fig. 1.24, function values f (x) for all 
x > E are inside the ε-neighborhood of point b.

The function limit for x → –∞ is de-
fi ned similarly.

If function f (x)  limits for x → +∞ and 
x → –∞ exist and are equal, e.g., to A, then they say, that f (x) has limit A or 
x → ∞, and they write simply 

→∞
=lim ( ) .

x
f x A

In defi nitions of a function limits given before, the limits are assumed to 
be fi nite. If function f (x) increases or decreases infi nitely when x → х0, the 
limit of f (x) is said to be equal to infi nity 

→
= ∞

0

( lim ( ) ).
x x

f x

Among functions, that have limits (at a certain point or ∞), a class of 
functions, which have a limit equal to 0, is selected. Such functions are called 
infi nitely small ones (infi nitesimals) and are fi nd by letters α, β, γ etc.

Fig. 1.23. Illustration to the defi ni-
tion of one-sided limits

y y = f (x)

xx0 

b1 

b2 

Fig. 1.24. Function limit when х → +∞

y

y = f (x)
b + ε

b – ε

b

xE0
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The concept of equivalence of infi nitesimals is often used in calculating 
limits.

Defi nition. Let α (x) and β (x) be infi nitely small functions. If 
0

( )lim 1,
( )x x

x
x→

α
=

βthen α(x) and β(x) are called equivalent ones (when x → x0). 

1.2.2. Basic theorems on limits
This section is devoted to the basic properties of function limits. Such 

rules give us a possibility to calculate limits of functions defi ned by algebraic 
operations on a variable. In the theorem, which will be given further, func-
tions f (x), g (x) are assumed to have a common domain containing the point 
x0, and have fi nite limits at this point.

Theorem 1.1. A limit of the sum of two functions is equal to the sum of 
their limits.
 ( )

→ → →
+ = +

0 0 0

lim ( ) ( ) lim ( ) lim ( ).
x x x x x x

f x g x f x g x

Theorem 1.2. The limit of the product of two functions is equal to the 
product of their limits.

 ( )
→ → →

⋅ = ⋅
0 0 0

lim ( ) ( ) lim ( ) lim ( ).
x x x x x x

f x g x f x g x

Corollary. A constant multiplier can be taken outside of the limit.

 ( )
→ →

=
0 0

lim ( ) lim ( ).
x x x x

cf x c f x

Theorem 1.3. The limit of the ratio of two functions is equal to the ratio of 
the limits of these functions if the limit of the denominator is diff erent from 0.

 →

→
→

= 0

0
0

lim ( )
( )lim .
( ) lim ( )

x x

x x
x x

f x
f x
g x g x

Theorem 1.4. The limit of the positive function is not negative. 
These statements are also true when x tends to ∞.

1.2.3. Special limits
If for applying basic theorems about function limits there are the expressions 

of the following forms: ⎡ ⎤
⎢ ⎥
⎣ ⎦

0
0

, ⎡ ⎤∞
⎢ ⎥∞⎣ ⎦

, ⎡ ⎤∞ −∞⎣ ⎦ , ⎡ ⎤⋅∞⎣ ⎦0 , ∞⎡ ⎤
⎣ ⎦1 , 00⎡ ⎤⎣ ⎦ , ⎡ ⎤∞⎣ ⎦

0  
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(which are called indeterminate forms) then special methods are used to obtain 
the answer (so-called evaluating the indeterminate forms).

The following limits are used to solve the examples:

 
0

sinlim 1;
x

x
x→

=  (1.19)

 1/
0

1lim 1 lim(1 ) 2.71828...,
x

x
e

x
α

→∞ α→

⎛ ⎞
+ = + α = =⎜ ⎟

⎝ ⎠
 (1.20)

which are called the fi rst and second remarkable limits respectively.
We are reminding (see Section 1.1.4) that the number e is the base of a 

natural logarithm.
Calculating limits, it is also useful to keep in mind the equations, which 

follow from (1.19) and (1.20):

 
20 0

0 0

1 cos 1 log(1 )lim ; lim 1;
2

1 (1 ) 1lim log ( 0); lim .

x x

x m

x x

x x
xx

a xa a m
x x

→ →

→ →

− +
= =

− + −
= > =

 (1.21)

1.2.4. Examples of fi nding some limits
Example 1. Find 

→
− +2

3
lim( 7 4).
x

x x

Solution. Applying the theorems on limits (Theorem 1.1) and replacing x in 
the analytical expression with its limit value, we obtain

 
→ → →

− + = − + = − + = −2 2
3 3 3

lim( 7 4) lim 7lim 4 9 21 4 8.
x x x

x x x x

Example 2. Find 
→

−

−

2

23

9lim .
3x

x
x x

Solution. Numerator and denominator of the fraction tend to zero when x 

tends to 3 (it is usual to say that the indeterminate form of ⎡ ⎤
⎢ ⎥
⎣ ⎦

0
0

). We have

 
→ →

⎡ ⎤− − +
= =⎢ ⎥ −− ⎣ ⎦

2

23 3

9 0 ( 3)( 3)lim lim .
0 ( 3)3x x

x x x
x xx x
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Since, in the defi nition of the function limit, it is mentioned, that for fi nd-
ing the limit of a function, the values of the function at the limit point can be 
ignored, then x – 3 ≠ 0. As a result, we can divide numerator by the denomi-
nator and obtain 

→

+ +
= =

3

3 3 3lim 2.
3x

x
x

Example 3. Find 
→

+ −
0

4 2lim
x

x
x

 (indeterminate form ⎡ ⎤
⎢ ⎥
⎣ ⎦

0
0

).

Solution. Let us multiply numerator and denominator of the fraction by 
sum + +4 2x  (the conjugate). We use a well-known algebraic formula 
а2 – b2 = (а – b)(а + b). We obtain

 
→ → →

+ − + + + −
= = =

+ + + + + +0 0 0

( 4 2)( 4 2) 4 4 1 1lim lim lim .
4( 4 2) ( 4 2) 4 2x x x

x x x

x x x x x

Example 4. Find 
→

+ − +

+ − +3

3 7 2 10lim
4 13 22x

x x

x x
 (indeterminate form ⎡ ⎤

⎢ ⎥
⎣ ⎦

0
0

).

Solution. Numerator and denominator of the fraction should be simulta-
neously multiplied by their conjugate, i.e. by the expression

 ( )( )+ + + + + +3 7 2 10 4 13 22 .x x x x
We obtain

 
( )( )
( )( )

( )
( )

3 3

3

3 7 2 10 3 7 2 10lim lim
4 13 22 4 13 22
3 7 2 10 4 13 22
3 7 2 10 4 13 22

4 13 22 5lim .
123 3 7 2 10

x x

x

x x x x

x x x x
x x x x

x x x x

x x

x x

→ →

→

+ − + + − +
= ×

+ − + + − +

+ + + + + +
× =

+ + + + + +

+ + +
= =

+ + +

Example 5. Find 
→

− −
−

3

7

6 1lim
7x

x
x

 (indeterminate form ⎡ ⎤
⎢ ⎥
⎣ ⎦

0
0

).

Solution. Let us use a well-known algebraic formula
 (а – b)(а2 + аb + b2) = а3 – b3.
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Let = −3 6,a x  b = 1. Therefore, in order to obtain a diff erence of cubes in 

the numerator, we should multiply it by ( )− + − +323 ( 6) 6 1 .x x  After multi-
plying numerator and denominator by this value, we obtain

 ( )( )
3

7 7 323

7 323

6 1 7lim lim
7 7 ( 6) 6 1

1 1 1lim .
1 1 1 3( 6) 6 1

x x

x

x x
x x x x

x x

→ →

→

− − −
= =

− − − + − +

= = =
+ +− + − +

Example 6. Find 
→∞

+ +

+ −

3 2

3
2 5lim
3 1x

x x
x x

 (indeterminate form ⎡ ⎤∞
⎢ ⎥∞⎣ ⎦

).

Solution. We divide both numerator and denominator by the highest 
degree x found in the parts of the fraction, and then pass to the limit cal-
culating:

 →∞ →∞ →∞

→∞ →∞

→∞ →∞ →∞

+ +
+ + + +

= = =
+ − + − + −

3 2 3 3

3 2 3

2 3

1 5lim 2 lim lim
2 5 2 1/ 5 / 2lim lim ,

1 1 33 1 3 1/ 1/ lim 3 lim lim

x x x

x x

x x x

x x x x x x
x x x x

x x

since when x → ∞ quantities 1/x, 1/x2 и 1/x3 are infi nitesimals, i.е. the limits 
of these quantities are equal to zero, when x → ∞. Now it is possible to apply 
the theorem about the quotient limit.

Example 7. Find 
→∞

⎛ ⎞
−⎜ ⎟

++⎝ ⎠

3 2

2
3lim

15 15 1x

x x
xx

 (indeterminate form ⎡ ⎤∞ − ∞⎣ ⎦ ).

Solution. We bring the expression on the common denominator, and then 
divide numerator and denominator into the highest power of x found in the 
fraction.

 
( )( )

( )( ) ( )

→∞ →∞

→∞ →∞

⎛ ⎞ + − −
= =−⎜ ⎟

+ +++⎝ ⎠
− −

= = =
⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠

4 3 4 23 2

22

3 2

2

2

15 15 33lim lim
15 1 15 15 15 1

3 1 3 /lim lim 1/ 75.
15 1 15 1 5 15 1/

x x

x x

x x x xx x
x xxx

x x x

x x x
x
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Example 8. Find 
→∞

−

+ +

4

8

3 2lim
3 2x

x

x x
 (indeterminate form ⎡ ⎤∞

⎢ ⎥∞⎣ ⎦
).

Solution. We divide the numerator and denominator by the highest degree 
of x found in the example, i.e. by х4.

 
→∞ →∞

−
−

= = =
+ + + +

4 4

8

7 8

23
3 2 3lim lim 3.

13 43 2 1
x x

x x
x x

x x

Example 9. Find ( )+ + − + +2 2lim 8 3 4 3x x x x  (indeterminate form 
⎡ ⎤∞ − ∞⎣ ⎦ ).

Solution. Multiply and divide the considered expression by its conjugate:

 

( )

( ) ( )

2 2

2 2
2 2

2 2

2 2

2 2 2 2

2 2

lim 8 3 4 3

8 3 4 3lim 8 3 4 3
8 3 4 3

8 3 4 3 4lim lim
8 3 4 3 8 3 4 3

4 4lim 2.
21 8 / 3 / 1 4 / 3 /

x

x

x x

x

x x x x

x x x xx x x x
x x x x

x x x x x

x x x x x x x x

x x x x

→+∞

→+∞

→+∞ →+∞

→+∞

+ + − + + =

+ + + + += + + − + + =
+ + + + +

+ + − − −
= = =

+ + + + + + + + + +

= = =
+ + + + +

Example 10. Find 
→0

sin4lim
x

x
x

 (indeterminate form ⎡ ⎤
⎢ ⎥
⎣ ⎦

0
0

).

Solution. We use the fi rst remarkable limit:

 
→ →

= ⋅ =
0 0

sin4 sin4lim lim 4 4.
4x y

x x
x x

Example 11. Find 
→

+ − −
0

cos( ) cos( )lim
h

x h x h
h

 (indeterminate form ⎡ ⎤
⎢ ⎥
⎣ ⎦

0
0

).

Solution. Using the formula

 cos cos 2sin sin ,
2 2

α + β α − β
α − β = − ⋅
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